334
Views
43
CrossRef citations to date
0
Altmetric
Review

Renin-angiotensin system as a potential target for new therapeutic approaches in Parkinson’s disease

, , &
Pages 1163-1173 | Received 21 Feb 2017, Accepted 21 Aug 2017, Published online: 29 Aug 2017

References

  • Arnold AC, Okamoto LE, Gamboa A, et al. Mineralocorticoid receptor activation contributes to the supine hypertension of autonomic failure. Hypertension. 2016;67:424–429.
  • Bach JP, Ziegler U, Deuschl G, et al. Projected numbers of people with movement disorders in the years 2030 and 2050. Mov Disord. 2011;26:2286–2290.
  • Kalia LV, Lang AE. Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol. 2016;12:65–66.
  • Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8:464–474.
  • Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4:49–60.
  • Fahn S. The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov Disord. 2008;23 Suppl 3:S497–508.
  • Olanow CW. The pathogenesis of cell death in Parkinson’s disease–2007. Mov Disord. 2007;22 Suppl 17:S335–342.
  • Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–840.
  • Perez-Lloret S, Sampaio C, Rascol O. Disease-modifying strategies in Parkinson’s Disease. In: Jankovik J, Tolosa E, editors. Parkinson’s disease and movement disorders. Philadelphia (PA): Wolters Kluwer; 2015.
  • Ferrario CM. The renin-angiotensin system: importance in physiology and pathology. J Cardiovasc Pharmacol. 1990;15 Suppl 3:S1–5.
  • Mascolo A, Sessa M, Scavone C, et al. New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): focus on cardiovascular and neurological diseases. Int J Cardiol. 2017;227:734–742.
  • Ciobica A, Bild W, Hritcu L, et al. Brain renin-angiotensin system in cognitive function: pre-clinical findings and implications for prevention and treatment of dementia. Acta Neurol Belg. 2009;109:171–180.
  • De Bundel D, Smolders I, Vanderheyden P, et al. Ang II and Ang IV: unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther. 2008;14:315–339.
  • Mertens B, Vanderheyden P, Michotte Y, et al. The role of the central renin-angiotensin system in Parkinson’s disease. J Renin Angiotensin Aldosterone Syst. 2010;11:49–56.
  • Romero CA, Orias M, Weir MR. Novel RAAS agonists and antagonists: clinical applications and controversies. Nat Rev Endocrinol. 2015;11:242–252.
  • Arroja MM, Reid E, McCabe C. Therapeutic potential of the renin angiotensin system in ischaemic stroke. Exp Transl Stroke Med. 2016;8:8.
  • Inagami T, Kambayashi Y, Ichiki T, et al. Angiotensin receptors: molecular biology and signalling. Clin Exp Pharmacol Physiol. 1999;26:544–549.
  • Karamyan VT, Arsenault J, Escher E, et al. Preliminary biochemical characterization of the novel, non-AT1, non-AT2 angiotensin binding site from the rat brain. Endocrine. 2010;37:442–448.
  • Ge J, Barnes NM. Alterations in angiotensin AT1 and AT2 receptor subtype levels in brain regions from patients with neurodegenerative disorders. Eur J Pharmacol. 1996;297:299–306.
  • Garrido-Gil P, Rodriguez-Perez AI, Fernandez-Rodriguez P, et al. Expression of angiotensinogen and receptors for angiotensin and prorenin in the rat and monkey striatal neurons and glial cells. Brain Struct Funct. 2017;222:2559–2571.
  • Kalra J, Prakash A, Kumar P, et al. Cerebroprotective effects of RAS inhibitors: beyond their cardio-renal actions. J Renin Angiotensin Aldosterone Syst. 2015;16:459–468.
  • Valenzuela R, Costa-Besada MA, Iglesias-Gonzalez J, et al. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death Dis. 2016;7:e2427.
  • Martinez-Pinilla E, Rodriguez-Perez AI, Navarro G, et al. Dopamine D2 and angiotensin II type 1 receptors form functional heteromers in rat striatum. Biochem Pharmacol. 2015;96:131–142.
  • Simonnet G, Giorguieff-Chesselet MF. Stimulating effect of angiotensin II on the spontaneous release of newly synthetized [3H]dopamine in rat striatal slices. Neurosci Lett. 1979;15:153–158.
  • Mendelsohn FA, Jenkins TA, Berkovic SF. Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Res. 1993;613:221–229.
  • Brown DC, Steward LJ, Ge J, et al. Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br J Pharmacol. 1996;118:414–420.
  • Mertens B, Vanderheyden P, Michotte Y, et al. Direct angiotensin II type 2 receptor stimulation decreases dopamine synthesis in the rat striatum. Neuropharmacology. 2010;58:1038–1044.
  • Dwoskin LP, Jewell AL, Cassis LA. DuP 753, a nonpeptide angiotensin II-1 receptor antagonist, alters dopaminergic function in rat striatum. Naunyn Schmiedebergs Arch Pharmacol. 1992;345:153–159.
  • Dominguez-Meijide A, Villar-Cheda B, Garrido-Gil P, et al. Effect of chronic treatment with angiotensin type 1 receptor antagonists on striatal dopamine levels in normal rats and in a rat model of Parkinson’s disease treated with L-DOPA. Neuropharmacology. 2014;76 Pt A:156–168.
  • Jenkins TA, Mendelsohn FA, Chai SY. Angiotensin-converting enzyme modulates dopamine turnover in the striatum. J Neurochem. 1997;68:1304–1311.
  • Stragier B, Sarre S, Vanderheyden P, et al. Metabolism of angiotensin II is required for its in vivo effect on dopamine release in the striatum of the rat. J Neurochem. 2004;90:1251–1257.
  • Villar-Cheda B, Rodriguez-Pallares J, Valenzuela R, et al. Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson’s disease. Eur J Neurosci. 2010;32:1695–1706.
  • Villar-Cheda B, Dominguez-Meijide A, Valenzuela R, et al. Aging-related dysregulation of dopamine and angiotensin receptor interaction. Neurobiol Aging. 2014;35:1726–1738.
  • Grammatopoulos TN, Ahmadi F, Jones SM, et al. Angiotensin II protects cultured midbrain dopaminergic neurons against rotenone-induced cell death. Brain Res. 2005;1045:64–71.
  • Grammatopoulos TN, Jones SM, Ahmadi FA, et al. Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol Neurodegener. 2007;2:1.
  • Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, et al. The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem. 2009;109:656–669.
  • Munoz A, Garrido-Gil P, Dominguez-Meijide A, et al. Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson’s disease. Involvement of vascular endothelial growth factor and interleukin-1beta. Exp Neurol. 2014;261:720–732.
  • Rodriguez-Pallares J, Quiroz CR, Parga JA, et al. Angiotensin II increases differentiation of dopaminergic neurons from mesencephalic precursors via angiotensin type 2 receptors. Eur J Neurosci. 2004;20:1489–1498.
  • Villar-Cheda B, Dominguez-Meijide A, Joglar B, et al. Involvement of microglial RhoA/Rho-kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors. Neurobiol Dis. 2012;47:268–279.
  • Lu J, Wu L, Jiang T, et al. Angiotensin AT2 receptor stimulation inhibits activation of NADPH oxidase and ameliorates oxidative stress in rotenone model of Parkinson’s disease in CATH.a cells. Neurotoxicol Teratol. 2015;47:16–24.
  • Ou Z, Jiang T, Gao Q, et al. Mitochondrial-dependent mechanisms are involved in angiotensin II-induced apoptosis in dopaminergic neurons. J Renin Angiotensin Aldosterone Syst. 2016;17.
  • Gao Q, Jiang T, Zhao HR, et al. Activation of autophagy contributes to the Angiotensin II-triggered apoptosis in a dopaminergic neuronal cell line. Mol Neurobiol. 2016;53:2911–2919.
  • Grammatopoulos TN, Outeiro TF, Hyman BT, et al. Angiotensin II protects against alpha-synuclein toxicity and reduces protein aggregation in vitro. Biochem Biophys Res Commun. 2007;363:846–851.
  • Borrajo A, Rodriguez-Perez AI, Diaz-Ruiz C, et al. Microglial TNF-alpha mediates enhancement of dopaminergic degeneration by brain angiotensin. Glia. 2014;62:145–157.
  • Hiroki J, Shimokawa H, Higashi M, et al. Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells. J Mol Cell Cardiol. 2004;37:537–546.
  • Valenzuela R, Barroso-Chinea P, Villar-Cheda B, et al. Location of prorenin receptors in primate substantia nigra: effects on dopaminergic cell death. J Neuropathol Exp Neurol. 2010;69:1130–1142.
  • Chiueh CC, Markey SP, Burns RS, et al. Neurochemical and behavioral effects of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) in rat, guinea pig, and monkey. Psychopharmacol Bull. 1984;20:548–553.
  • Blesa J, Phani S, Jackson-Lewis V, et al. Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol. 2012;2012:1–10.
  • Lopez-Real A, Rey P, Soto-Otero R, et al. Angiotensin-converting enzyme inhibition reduces oxidative stress and protects dopaminergic neurons in a 6-hydroxydopamine rat model of Parkinsonism. J Neurosci Res. 2005;81:865–873.
  • Sonsalla PK, Coleman C, Wong LY, et al. The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism. Exp Neurol. 2013;250:376–383.
  • Kurosaki R, Muramatsu Y, Kato H, et al. Effect of angiotensin-converting enzyme inhibitor perindopril on interneurons in MPTP-treated mice. Eur Neuropsychopharmacol. 2005;15:57–67.
  • Kurosaki R, Muramatsu Y, Imai Y, et al. Neuroprotective effect of the angiotensin-converting enzyme inhibitor perindopril in MPTP-treated mice. Neurol Res. 2004;26:644–657.
  • Jenkins TA, Wong JY, Howells DW, et al. Effect of chronic angiotensin-converting enzyme inhibition on striatal dopamine content in the MPTP-treated mouse. J Neurochem. 1999;73:214–219.
  • Mertens B, Varcin M, Michotte Y, et al. The neuroprotective action of candesartan is related to interference with the early stages of 6-hydroxydopamine-induced dopaminergic cell death. Eur J Neurosci. 2011;34:1141–1148.
  • Wu L, Tian YY, Shi JP, et al. Inhibition of endoplasmic reticulum stress is involved in the neuroprotective effects of candesartan cilexitil in the rotenone rat model of Parkinson’s disease. Neurosci Lett. 2013;548:50–55.
  • Sathiya S, Ranju V, Kalaivani P, et al. Telmisartan attenuates MPTP induced dopaminergic degeneration and motor dysfunction through regulation of alpha-synuclein and neurotrophic factors (BDNF and GDNF) expression in C57BL/6J mice. Neuropharmacology. 2013;73:98–110.
  • Garrido-Gil P, Joglar B, Rodriguez-Perez AI, et al. Involvement of PPAR-gamma in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson’s disease. J Neuroinflammation. 2012;9:38.
  • Tong Q, Wu L, Jiang T, et al. Inhibition of endoplasmic reticulum stress-activated IRE1alpha-TRAF2-caspase-12 apoptotic pathway is involved in the neuroprotective effects of telmisartan in the rotenone rat model of Parkinson’s disease. Eur J Pharmacol. 2016;776:106–115.
  • Munoz A, Rey P, Guerra MJ, et al. Reduction of dopaminergic degeneration and oxidative stress by inhibition of angiotensin converting enzyme in a MPTP model of parkinsonism. Neuropharmacology. 2006;51:112–120.
  • Galehdar Z, Swan P, Fuerth B, et al. Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J Neurosci. 2010;30:16938–16948.
  • Schintu N, Frau L, Ibba M, et al. PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur J Neurosci. 2009;29:954–963.
  • Fabbrini G, Brotchie JM, Grandas F, et al. Levodopa-induced dyskinesias. Mov Disord. 2007;22:1379–1389; quiz 523.
  • Fox SH, Katzenschlager R, Lim SY, et al. The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2011;26 Suppl 3:S2–41.
  • Lang AE, Melamed E, Poewe W, et al. Trial designs used to study neuroprotective therapy in Parkinson’s disease. Mov Disord. 2013;28:86–95.
  • Zawada WM, Mrak RE, Biedermann J, et al. Loss of angiotensin II receptor expression in dopamine neurons in Parkinson’s disease correlates with pathological progression and is accompanied by increases in Nox4- and 8-OH guanosine-related nucleic acid oxidation and caspase-3 activation. Acta Neuropathol Commun. 2015;3:9.
  • Rocha NP, Scalzo PL, Barbosa IG, et al. Peripheral levels of angiotensins are associated with depressive symptoms in Parkinson’s disease. J Neurol Sci. 2016;368:235–239.
  • Konings CH, Kuiper MA, Bergmans PL, et al. Increased angiotensin-converting enzyme activity in cerebrospinal fluid of treated patients with Parkinson’s disease. Clin Chim Acta. 1994;231:101–106.
  • Lin JJ, Yueh KC, Chang DC, et al. Association between genetic polymorphism of angiotensin-converting enzyme gene and Parkinson’s disease. J Neurol Sci. 2002;199:25–29.
  • Mellick GD, Buchanan DD, McCann SJ, et al. The ACE deletion polymorphism is not associated with Parkinson’s disease. Eur Neurol. 1999;41:103–106.
  • Reardon KA, Mendelsohn FA, Chai SY, et al. The angiotensin converting enzyme (ACE) inhibitor, perindopril, modifies the clinical features of Parkinson’s disease. Aust N Z J Med. 2000;30:48–53.
  • Becker C, Jick SS, Meier CR. Use of antihypertensives and the risk of Parkinson disease. Neurology. 2008;70:1438–1444.
  • Ritz B, Rhodes SL, Qian L, et al. L-type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol. 2010;67:600–606.
  • Lee YC, Lin CH, Wu RM, et al. Antihypertensive agents and risk of Parkinson’s disease: a nationwide cohort study. PLoS One. 2014;9:e98961.
  • Ancelin ML, Carriere I, Scali J, et al. Angiotensin-converting enzyme gene variants are associated with both cortisol secretion and late-life depression. Transl Psychiatry. 2013;3:e322.
  • Su G, Dou H, Zhao L, et al. The angiotensin-converting enzyme (ACE) I/D polymorphism in Parkinson’s disease. J Renin Angiotensin Aldosterone Syst. 2015;16:428–433.
  • Ascherio A, Tanner CM. Use of antihypertensives and the risk of Parkinson disease. Neurology. 2009;72:578–579.
  • Grace AA. Physiology of the normal and dopamine-depleted basal ganglia: insights into levodopa pharmacotherapy. Mov Disord. 2008;23 Suppl 3:S560–569.
  • Sink KM, Leng X, Williamson J, et al. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the Cardiovascular Health Study. Arch Intern Med. 2009;169:1195–1202.
  • Aulakh GK, Sodhi RK, Singh M. An update on non-peptide angiotensin receptor antagonists and related RAAS modulators. Life Sci. 2007;81:615–639.
  • Culman J, Jacob T, Schuster SO, et al. Neuroprotective effects of AT1 receptor antagonists after experimental ischemic stroke: what is important? Naunyn Schmiedebergs Arch Pharmacol. 2017;390:949–959.
  • Villapol S, Saavedra JM. Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens. 2015;28:289–299.
  • Labandeira-Garcia JL, Rodriguez-Pallares J, Dominguez-Meijide A, et al. Dopamine-angiotensin interactions in the basal ganglia and their relevance for Parkinson’s disease. Mov Disord. 2013;28:1337–1342.
  • Labandeira-Garcia JL, Garrido-Gil P, Rodriguez-Pallares J, et al. Brain renin-angiotensin system and dopaminergic cell vulnerability. Front Neuroanat. 2014;8:67.
  • Perez-Lloret S, Rey MV, Fabre N, et al. Factors related to orthostatic hypotension in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:501–505.
  • Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer’s and Parkinson’s diseases. Prog Neurobiol. 2015;125:26–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.