798
Views
57
CrossRef citations to date
0
Altmetric
Review

PI3Kδ-selective and PI3Kα/δ-combinatorial inhibitors in clinical development for B-cell non-Hodgkin lymphoma

&
Pages 1267-1279 | Received 13 Jul 2017, Accepted 22 Sep 2017, Published online: 06 Oct 2017

References

  • Goodman LS, Wintrobe MM, Dameshek W, et al. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Assoc. 1946 Sep;21(132):126–132.
  • Westin JR. Status of PI3K/Akt/mTOR pathway inhibitors in lymphoma. Clin Lymphoma Myeloma Leuk. 2014 Oct;14(5):335–342.
  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, et al. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010 May;11(5):329–341.
  • Clayton E, Bardi G, Bell SE, et al. A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med. 2002 Sep 16;196(6):753–763.
  • Jou ST, Carpino N, Takahashi Y, et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol Cell Biol. 2002 Dec;22(24):8580–8591.
  • Okkenhaug K, Bilancio A, Farjot G, et al. Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science. 2002 Aug 09;297(5583):1031–1034.
  • Ramadani F, Bolland DJ, Garcon F, et al. The PI3K isoforms p110alpha and p110delta are essential for pre-B cell receptor signaling and B cell development. Sci Signal. 2010 Aug 10;3(134):ra60.
  • Webb LM, Vigorito E, Wymann MP, et al. Cutting edge: T cell development requires the combined activities of the p110gamma and p110delta catalytic isoforms of phosphatidylinositol 3-kinase. J Immunol. 2005 Sep 01;175(5):2783–2787.
  • Garcon F, Patton DT, Emery JL, et al. CD28 provides T-cell costimulation and enhances PI3K activity at the immune synapse independently of its capacity to interact with the p85/p110 heterodimer. Blood. 2008 Feb 01;111(3):1464–1471.
  • Janas ML, Varano G, Gudmundsson K, et al. Thymic development beyond beta-selection requires phosphatidylinositol 3-kinase activation by CXCR4. J Exp Med. 2010 Jan 18;207(1):247–261.
  • Ali K, Soond DR, Pineiro R, et al. Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature. 2014 Jun 19;510(7505):407–411.
  • Okkenhaug K, Patton DT, Bilancio A, et al. The p110delta isoform of phosphoinositide 3-kinase controls clonal expansion and differentiation of Th cells. J Immunol. 2006 Oct 15;177(8):5122–5128.
  • Martin AL, Schwartz MD, Jameson SC, et al. Selective regulation of CD8 effector T cell migration by the p110 gamma isoform of phosphatidylinositol 3-kinase. J Immunol. 2008 Feb 15;180(4):2081–2088.
  • Thomas MS, Mitchell JS, DeNucci CC, et al. The p110gamma isoform of phosphatidylinositol 3-kinase regulates migration of effector CD4 T lymphocytes into peripheral inflammatory sites. J Leukoc Biol. 2008 Sep;84(3):814–823.
  • Patton DT, Garden OA, Pearce WP, et al. Cutting edge: the phosphoinositide 3-kinase p110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J Immunol. 2006 Nov 15;177(10):6598–6602.
  • Steinbach EC, Kobayashi T, Russo SM, et al. Innate PI3K p110delta regulates Th1/Th17 development and microbiota-dependent colitis. J Immunol. 2014 Apr 15;192(8):3958–3968.
  • Aksoy E, Taboubi S, Torres D, et al. The p110delta isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat Immunol. 2012 Nov;13(11):1045–1054.
  • Koyasu S. The role of PI3K in immune cells. Nat Immunol. 2003 Apr;4(4):313–319.
  • Sasaki T, Irie-Sasaki J, Jones RG, et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science. 2000 Feb 11;287(5455):1040–1046.
  • Kaneda MM, Messer KS, Ralainirina N, et al. PI3Kgamma is a molecular switch that controls immune suppression. Nature. 2016 Nov 17;539(7629):437–442.
  • Abubaker J, Bavi PP, Al-Harbi S, et al. PIK3CA mutations are mutually exclusive with PTEN loss in diffuse large B-cell lymphoma. Leukemia. 2007 Nov;21(11):2368–2370.
  • Baohua Y, Xiaoyan Z, Tiecheng Z, et al. Mutations of the PIK3CA gene in diffuse large B cell lymphoma. Diagn Mol Pathol. 2008 Sep;17(3):159–165.
  • Wang X, Huang H, Young KH. The PTEN tumor suppressor gene and its role in lymphoma pathogenesis. Aging (Albany NY). 2015 Dec;7(12):1032–1049.
  • Psyrri A, Papageorgiou S, Liakata E, et al. Phosphatidylinositol 3ʹ-kinase catalytic subunit alpha gene amplification contributes to the pathogenesis of mantle cell lymphoma. Clin Cancer Res. 2009 Sep 15;15(18):5724–5732.
  • Cui W, Cai Y, Wang W, et al. Frequent copy number variations of PI3K/AKT pathway and aberrant protein expressions of PI3K subunits are associated with inferior survival in diffuse large B cell lymphoma. J Transl Med. 2014 Jan 13;12:10.
  • Okkenhaug K, Graupera M, Vanhaesebroeck B. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 2016 Oct;6(10):1090–1105.
  • Shaffer AL, Young RM, 3rd, Staudt LM. Pathogenesis of human B cell lymphomas. Annu Rev Immunol. 2012;30:565–610.
  • Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol. 2013 Dec;34(12):592–601.
  • Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010 Jan 07;463(7277):88–92.
  • Lannutti BJ, Meadows SA, Herman SE, et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011 Jan 13;117(2):591–594.
  • Hoellenriegel J, Meadows SA, Sivina M, et al. The phosphoinositide 3ʹ-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011 Sep 29;118(13):3603–3612.
  • Meadows SA, Vega F, Kashishian A, et al. PI3Kdelta inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood. 2012 Feb 23;119(8):1897–1900.
  • Herman SE, Gordon AL, Wagner AJ, et al. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010 Sep 23;116(12):2078–2088.
  • Shull AY, Noonepalle SK, Awan FT, et al. RPPA-based protein profiling reveals eIF4G overexpression and 4E-BP1 serine 65 phosphorylation as molecular events that correspond with a pro-survival phenotype in chronic lymphocytic leukemia. Oncotarget. 2015 Jun 10;6(16):14632–14645.
  • Paul J, Soujon M, Wengner AM, et al. Simultaneous inhibition of PI3Kdelta and PI3Kalpha induces ABC-DLBCL regression by blocking BCR-dependent and -independent activation of NF-kappaB and AKT. Cancer Cell. 2017 Jan 09;31(1):64–78.
  • Gockeritz E, Kerwien S, Baumann M, et al. Efficacy of phosphatidylinositol-3 kinase inhibitors with diverse isoform selectivity profiles for inhibiting the survival of chronic lymphocytic leukemia cells. Int J Cancer. 2015 Nov 01;137(9):2234–2242.
  • Iyengar S, Clear A, Bodor C, et al. P110alpha-mediated constitutive PI3K signaling limits the efficacy of p110delta-selective inhibition in mantle cell lymphoma, particularly with multiple relapse. Blood. 2013 Mar 21;121(12):2274–2284.
  • Ten Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: implications for disease pathogenesis and treatment. Biochim Biophys Acta. 2016 Mar;1863(3):401–413.
  • Brown JR, Byrd JC, Coutre SE, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014 May 29;123(22):3390–3397.
  • Fiorcari S, Brown WS, McIntyre BW, et al. The PI3-kinase delta inhibitor idelalisib (GS-1101) targets integrin-mediated adhesion of chronic lymphocytic leukemia (CLL) cell to endothelial and marrow stromal cells. PLoS One. 2013;8(12):e83830.
  • Marshall NA, Galvin KC, Corcoran AM, et al. Immunotherapy with PI3K inhibitor and Toll-like receptor agonist induces IFN-gamma+IL-17+ polyfunctional T cells that mediate rejection of murine tumors. Cancer Res. 2012 Feb 01;72(3):581–591.
  • Winkler DG, Faia KL, DiNitto JP, et al. PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem Biol. 2013 Nov 21;20(11):1364–1374.
  • Burris HA, Patel MR, Lanasa MC, et al. Activity of TGR-1202, a novel once-daily PI3Kδ inhibitor, in patients with relapsed or refractory hematologic malignancies [Meeting Abstract]. J Clin Oncol. 2014;32(15_suppl):2513–2513.
  • Viswanadha S, Gaudio E, Zucca E, et al. Dual PI3Kδ/γ inhibition by RP6530 induces apoptosis and cytotoxicity in b-lymphoma cells [Meeting Abstract]. Blood. 2013;122(21):4411–4411.
  • Shin N, Koblish H, Covington M, et al. INCB050465, a novel PI3K delta inhibitor, synergizes with PIM protein kinase inhibition to cause tumor regression in a model of DLBCL [Meeting Abstract]. Cancer Research. 2015;75:2.
  • Cushing TD, Hao X, Shin Y, et al. Discovery and in vivo evaluation of (S)-N-(1-(7-fluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine (AMG319) and related PI3Kdelta inhibitors for inflammation and autoimmune disease. J Med Chem. 2015 Jan 08;58(1):480–511.
  • Folkes AJ, Ahmadi K, Alderton WK, et al. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-t hieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem. 2008 Sep 25;51(18):5522–5532.
  • Shugg RP, Thomson A, Tanabe N, et al. Effects of isoform-selective phosphatidylinositol 3-kinase inhibitors on osteoclasts: actions on cytoskeletal organization, survival, and resorption. J Biol Chem. 2013 Dec 06;288(49):35346–35357.
  • Liu N, Rowley BR, Bull CO, et al. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110alpha and p110delta activities in tumor cell lines and xenograft models. Mol Cancer Ther. 2013 Nov;12(11):2319–2330.
  • Flinn IW, Kahl BS, Leonard JP, et al. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-delta, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood. 2014 May 29;123(22):3406–3413.
  • Gopal AK, Kahl BS, De Vos S, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014 Mar 13;370(11):1008–1018.
  • Kahl B, Byrd JC, Flinn IW, et al. Clinical safety and activity in a phase 1 Study of CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3-kinase P110δ, in patients with relapsed or refractory non-Hodgkin Lymphoma [Meeting Abstract]. Blood. 2010;116(21):1777–1777.
  • Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014 Mar 13;370(11):997–1007.
  • Sharman JP, Coutre SE, Furman RR, et al. Second interim analysis of a phase 3 study of idelalisib plus rituximab for relapsed chronic lymphocytic leukemia: efficacy analysis in patient subpopulations with Del(17p) and other adverse prognostic factors [Meeting Abstract]. Blood. 2014;124(21):330–330.
  • Zelenetz AD, Barrientos JC, Brown JR, et al. Idelalisib or placebo in combination with bendamustine and rituximab in patients with relapsed or refractory chronic lymphocytic leukaemia: interim results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2017 Mar;18(3):297–311.
  • Jones JA, Robak T, Brown JR, et al. Efficacy and safety of idelalisib in combination with ofatumumab for previously treated chronic lymphocytic leukaemia: an open-label, randomised phase 3 trial. Lancet Haematol. 2017 Mar;4(3):e114–e126.
  • Coutre SE, Barrientos JC, Brown JR, et al. Management of adverse events associated with idelalisib treatment: expert panel opinion. Leuk Lymphoma. 2015;56(10):2779–2786.
  • Cheah CY, Nastoupil LJ, Neelapu SS, et al. Lenalidomide, idelalisib, and rituximab are unacceptably toxic in patients with relapsed/refractory indolent lymphoma. Blood. 2015;125(21):3357–3359.
  • Smith SM, Pitcher BN, Jung SH, et al. Safety and tolerability of idelalisib, lenalidomide, and rituximab in relapsed and refractory lymphoma: the Alliance for Clinical Trials in Oncology A051201 and A051202 phase 1 trials. Lancet Haematol. 2017 Apr;4(4):e176–e182.
  • Lampson BL, Kasar SN, Matos TR, et al. Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood. 2016 Jul 14;128(2):195–203.
  • Weidner AS, Panarelli NC, Geyer JT, et al. Idelalisib-associated colitis: histologic findings in 14 patients. Am J Surg Pathol. 2015 Dec;39(12):1661–1667.
  • Cheah CY, Fowler NH. Idelalisib in the management of lymphoma. Blood. 2016 Jul 21;128(3):331–336.
  • Dong S, Guinn D, Dubovsky JA, et al. IPI-145 antagonizes intrinsic and extrinsic survival signals in chronic lymphocytic leukemia cells. Blood. 2014 Dec 04;124(24):3583–3586.
  • Balakrishnan K, Peluso M, Fu M, et al. The phosphoinositide-3-kinase (PI3K)-delta and gamma inhibitor, IPI-145 (Duvelisib), overcomes signals from the PI3K/AKT/S6 pathway and promotes apoptosis in CLL. Leukemia. 2015 Sep;29(9):1811–1822.
  • Thompson R, Villegas V, Proctor J, et al. The potent PI3K-δ,γ inhibitor IPI-145 exhibits differential activity in Diffuse Large B-Cell Lymphoma (DLBCL) cell lines [Meeting Abstract]. Blood. 2013;122(21):1832–1832.
  • White K, Murphy E, Faia K, et al. Combination of duvelisib with either ibrutinib or dexamethasone prevents mTOR-dependent feedback in aggressive B-cell lymphoma cell lines [Meeting Abstract]. Cancer Research. 2016;76(14 Supplement):376–376.
  • Wang J, Zhang V, Bell T, et al. The effects of PI3K-δ/γ inhibitor, duvelisib, in mantle cell lymphoma in vitro and in patient-derived xenograft studies [Meeting Abstract]. Blood. 2016;128(22):3016–3016.
  • Flinn I, Oki Y, Patel M, et al. A phase 1 evaluation of duvelisib (IPI-145), a PI3K-δ,γ inhibitor, in patients with relapsed/refractory iNHL [Meeting Abstract]. Blood. 2014;124(21):802–802.
  • Zinzani P, Wagner-Johnston N, Miller C, et al. DYNAMO: a phase 2 study demonstrating the clinical activity of duvelisib in patients with double-refractory indolent non-Hodgkin lymphoma [Meeting Abstract]. Hematol Oncol. 2017;35:69–70.
  • Patel MR, O’Brien SM, Faia K, et al. Early clinical activity and pharmacodynamic effects of duvelisib, a PI3K-δ,γ inhibitor, in patients with treatment-naïve CLL [Meeting Abstract]. J Clin Oncol. 2015;33(15_suppl):7074–7074.
  • O’Brien S, Patel M, Kahl BS, et al. Duvelisib (IPI-145), a PI3K-δ,γ inhibitor, is clinically active in patients with relapsed/refractory chronic lymphocytic leukemia [Meeting Abstract]. Blood. 2014;124(21):3334–3334.
  • Porcu P, Flinn I, Kahl BS, et al. Clinical activity of Duvelisib (IPI-145), a phosphoinositide-3-kinase-δ,γ inhibitor, in patients previously treated with Ibrutinib [Meeting Abstract]. Blood. 2014;124(21):3335–3335.
  • O’Brien S, Faia K, White K, et al. Early clinical activity and pharmacodynamic effects of Duvelisib, a PI3K-delta/gamma inhibitor, in patients with treatment-naive CLL [Meeting Abstract]. Haematologica. 2015;100:154–155.
  • Flinn I, Jäger U, Offner F, et al. DUO: a phase 3 trial of the PI3K-δ,γ inhibitor IPI-145 versus ofatumumab in patients with relapsed or refractory chronic lymphocytic leukemia or small lymphocytic lymphoma [Meeting Abstract]. J Clin Oncol. 2014;32(15_suppl):TPS7122–TPS7122.
  • Casulo C, Sancho J-M, Van Eygen K, et al. Contempo: preliminary results in first-line treatment of follicular lymphoma with the oral dual PI3K-δ,γ inhibitor, Duvelisib, in combination with Rituximab or Obinutuzumab [Meeting Abstract]. Blood. 2016;128(22):2979–2979.
  • Flinn IW, Cherry M, Maris M, et al. Combination trial of Duvelisib (IPI-145) with Bendamustine, Rituximab, or Bendamustine/Rituximab in patients with lymphoma or chronic lymphocytic leukemia [Meeting Abstract]. Blood. 2015;126(23):3928–3928.
  • Davids MS, Kim HT, Gilbert E, et al. Preliminary results of a phase Ib study of Duvelisib in combination with FCR (dFCR) in previously untreated, younger patients with CLL [Meeting Abstract]. Blood. 2015;126(23):4158–4158.
  • Deng C, Lipstein MR, Scotto L, et al. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kdelta and CK1epsilon in hematological malignancies. Blood. 2017 Jan 05;129(1):88–99.
  • Friedman DR, Lanasa MC, Brander DM, et al. Comparison of the PI3K-δ Inhibitors TGR1202 and GS-1101 in inducing cytotoxicity and inhibiting phosphorylation of Akt in CLL cells in vitro [Meeting Abstract]. Blood. 2012;120(21):3914–3914.
  • Mato A, Burris HA, Flinn I, et al. Long-term follow-up of the next generation PI3K-delta Inhibitor TGR-1202 demonstrates safety and high response rates in CLL: integrated analysis of TGR-1202 monotherapy and combined with Ublituximab [Meeting Abstract]. Haematologica. 2016;101:50–51.
  • O’Connor OA, Flinn I, Lunning M, et al. Long-term follow-up of the next generation PI3K-delta inhibitor TGR-1202 demonstrates safety and high response rates in NHL: integrated analysis of TGR-1202 monotherapy and combined with Ublituximab [Meeting Abstract]. Haematologica. 2016;101:102–103.
  • Lunning MA, Vose JM, Bierman PJ, et al. Combination of TGR-1202, Ublituximab, and Bendamustine is safe and highly active in patients with advanced DLBCL and follicular lymphoma [Meeting Abstract]. Hematol Oncol. 2017;35:266–267.
  • De Rooij MF, Kuil A, Kater AP, et al. Ibrutinib and idelalisib synergistically target BCR-controlled adhesion in MCL and CLL: a rationale for combination therapy. Blood. 2015 Apr 02;125(14):2306–2309.
  • Davids MS, Kim HT, Nicotra A, et al. Updated results of a multicenter phase I/Ib study of TGR-1202 in combination with Ibrutinib in patients with relapsed or refractory MCL or CLL [Meeting Abstract]. Hematol Oncol. 2017;35:54–55.
  • Nastoupil L, Lunning MA, Vose JM, et al. Chemo-free triplet combination of TGR-1202, Ublituximab, and Ibrutinib is well tolerated and highly active in patients with advanced CLL and NHL [Meeting Abstract]. Hematol Oncol. 2017;35:112–113.
  • Gaudio E, Kwee I, Spriano F, et al. The phosphatidylinositol-3-kinase (PI3K) inhibitor (i) copanlisib is active in preclinical models of B-cell lymphomas as single agent and in combination with conventional and targeted agents including venetoclax and palbociclib [Meeting Abstract]. Cancer Research. 2017;77(13 Supplement):154–154.
  • Patnaik A, Appleman LJ, Tolcher AW, et al. First-in-human phase I study of copanlisib (BAY 80-6946), an intravenous pan-class I phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Ann Oncol. 2016 Oct;27(10):1928–1940.
  • Nowakowski GS, Gorbatchevsky I, Hiemeyer F, et al. CHRONOS-2: a randomized, double-blind phase III study of phosphatidylinositol-3 kinase alpha/delta inhibitor copanlisib versus placebo in patients with rituximab-refractory indolent non-Hodgkin’s lymphoma (iNHL) [Meeting Abstract]. Cancer Research. 2015;75(15Supplement):CT212–CT212.
  • Dreyling M, Morschhauser F, Bouabdallah K, et al. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann Oncol. 2017;28:2169–2178.
  • Dreyling M, Santoro A, Mollica L, et al. Copanlisib in patients with relapsed or refractory indolent B-cell lymphoma (CHRONOS-1) [Meeting Abstract]. Hematol Oncol. 2017;35:119–120.
  • Lenz G, Hawkes E, Verhoef G, et al. Clinical outcomes and molecular characterization from a phase II study of Copanlisib in patients with relapsed or refractory diffuse large B cell lymphoma [Meeting Abstract]. Hematol Oncol. 2017;35:68–69.
  • Carlo-Stella C, Barde P, Delarue R, et al. Safety and clinical activity of RP6530, a Dual PI3Kδ/γ inhibitor, in patients with advanced hematologic malignancies: final analysis of a phase i multi-center study [Meeting Abstract]. Hematol Oncol. 2017;35:263–263.
  • Carlo-Stella C, Delarue R, Barde PJ, et al. Clinical activity and safety of RP6530, a Dual PI3Kδ/γ Inhibitor, in patients with advanced hematologic malignancies: final analysis of a phase 1 multicenter study [Meeting Abstract]. Blood. 2016;128(22):3011–3011.
  • Caimi P, Ramchandren R, Phillips TJ, et al. Ongoing phase 1/2 study of INCB050465, a selective PI3Kδ Inibitor, for the treatment of patients with relapsed/refractory B-cell malignancies (CITADEL-101) [Meeting Abstract]. Hematol Oncol. 2017;35:268–268.
  • Coleman M, Forero-Torres A, Ribrag V, et al. Phase 2 study of the safety and efficacy of INCB050465 in patients with relapsed or refractory (R/R) diffuse large b-cell lymphoma (DLBCL) (CITADEL-202) [Meeting Abstract]. J Clin Oncol. 2017;35(15_suppl):TPS7579–TPS7579.
  • Coleman M, Salar A, Munoz J, et al. Phase 1 study of the safety and efficacy of INCB050465 combined with obinutuzumab and bendamustine for relapsed or refractory (R/R) follicular lymphoma (FL) (CITADEL-102) [Meeting Abstract]. J Clin Oncol. 2017;35(15_suppl):TPS7578–TPS7578.
  • Glenn M, Mato AR, Allgood SD, et al. First-in-human study of AMG 319, a highly selective, small molecule inhibitor of PI3Kδ, in adult patients with relapsed or refractory lymphoid malignancies [Meeting Abstract]. Blood. 2013;122(21):678–678.
  • Kater A, Tonino S, Kersten M, et al. Interim analysis of a phase 1B study evaluating the safety of GS-9820, a second generation PI3K-delta inhibitor, in relapsed/refractory lymphoid malignancies [Meeting Abstract]. Haematologica. 2015;100:458–458.
  • Garcia-Martinez JM, Wullschleger S, Preston G, et al. Effect of PI3K- and mTOR-specific inhibitors on spontaneous B-cell follicular lymphomas in PTEN/LKB1-deficient mice. Br J Cancer. 2011 Mar 29;104(7):1116–1125.
  • Sarker D, Ang JE, Baird R, et al. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2015 Jan 01;21(1):77–86.
  • Huang S, Nastoupil LJ, Guo H, et al. Pre-clinical evaluation of the PI3K-p110β/δ Inhibitor KA2237 in mantle cell lymphoma [Meeting Abstract]. Blood. 2016;128(22):1837–1837.
  • Zelenetz AD, Lamanna N, Kipps TJ, et al. A phase 2 study of Idelalisib monotherapy in previously untreated patients ≥65 years with Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL) [Meeting Abstract]. Blood. 2014;124(21):1986–1986.
  • O’Brien SM, Lamanna N, Kipps TJ, et al. A phase 2 study of idelalisib plus rituximab in treatment-naive older patients with chronic lymphocytic leukemia. Blood. 2015 Dec 17;126(25):2686–2694.
  • Mato AR, Hill BT, Lamanna N, et al. Optimal sequencing of ibrutinib, idelalisib, and venetoclax in chronic lymphocytic leukemia: results from a multicenter study of 683 patients. Ann Oncol. 2017 May 01;28(5):1050–1056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.