996
Views
60
CrossRef citations to date
0
Altmetric
Review

Investigational glucagon receptor antagonists in Phase I and II clinical trials for diabetes

, &
Pages 1373-1389 | Received 10 Aug 2017, Accepted 17 Oct 2017, Published online: 26 Oct 2017

References

  • Lefebvre PJ. Early milestones in glucagon research. Diabetes Obes Metab. 2011;13(Suppl 1):1–4.
  • Ahren B. Glucagon–early breakthroughs and recent discoveries. Peptides. 2015;67:74–81.
  • Campbell JE, Drucker DJ. Islet alpha cells and glucagon–critical regulators of energy homeostasis. Nat Rev Endocrinol. 2015;11:329–338.
  • Lefèbvre P. Glucagon’ s golden jubilee at the University of Liège. Br J Diabetes Vasc Dis. 2012;12:278–284.
  • Lefebvre PJ, Paquot N, Scheen AJ. Inhibiting or antagonizing glucagon: making progress in diabetes care. Diabetes Obes Metab. 2015;17:720–725.
  • Kulina GR, Rayfield EJ. The role of glucagon in the pathophysiology and management of diabetes. Endocr Pract. 2016;22:612–621.
  • Raskin P, Unger RH. Hyperglucagonemia and its suppression. Importance in the metabolic control of diabetes. N Engl J Med. 1978;299:433–436.
  • Lefèbvre PJ, Luyckx AS. Glucagon and diabetes: a reappraisal. Diabetologia. 1979;16:347–354.
  • Holst JJ, et al. Insulin and glucagon: partners for life. Endocrinology. 2017;158:696–701.
  • Unger RH, Cherrington AD. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J Clin Invest. 2012;122:4–12.
  • Lee YH, Wang MY, Yu XX, et al. Glucagon is the key factor in the development of diabetes. Diabetologia. 2016;59:1372–1375.
  • Young A. Inhibition of glucagon secretion. Adv Pharmacol. 2005;52:151–171.
  • Djuric SW, Grihalde N, Lin CW. Glucagon receptor antagonists for the treatment of type II diabetes: current prospects. Curr Opin Investig Drugs. 2002;3:1617–1623.
  • Bagger JI, Knop FK, Holst JJ, et al. Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes Obes Metab. 2011;13:965–971.
  • Scheen AJ. Investigational insulin secretagogues for type 2 diabetes. Expert Opin Investig Drugs. 2016;25:405–422.
  • Paquot N, Schneiter P, Jequier E, et al. Effects of ingested fructose and infused glucagon on endogenous glucose production in obese NIDDM patients, obese non-diabetic subjects, and healthy subjects. Diabetologia. 1996;39:580–586.
  • Müller TD, et al. The new biology and pharmacology of glucagon. Physiol Rev. 2017;97:721–766.
  • Abraham MA, et al. Glucagon action in the brain. Diabetologia. 2016;59:1367–1371.
  • Feczko PJ, et al. Gastroduodenal response to low-dose glucagon. AJR Am J Roentgenol. 1983;140:935–940.
  • Dunning BE, Gerich JE. The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev. 2007;28:253–283.
  • Johnson DG, Goebel CU, Hruby VJ, et al. Hyperglycemia of diabetic rats decreased by a glucagon receptor antagonist. Science. 1982;215:1115–1116.
  • Gysin B, Trivedi D, Johnson DG, et al. Design and synthesis of glucagon partial agonists and antagonists. Biochemistry. 1986;25:8278–8284.
  • Ali S, Drucker DJ. Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am J Physiol Endocrinol Metab. 2009;296:E415–421.
  • Pearson MJ, Unger RH, Holland WL. Clinical trials, triumphs, and tribulations of glucagon receptor antagonists. Diabetes Care. 2016;39:1075–1077.
  • Mittermayer F, Caveney E, De Oliveira C, et al. Addressing unmet medical needs in type 2 diabetes: a narrative review of drugs under development. Curr Diabetes Rev. 2015;11:17–31.
  • Bailey CJ, Tahrani AA, Barnett AH. Future glucose-lowering drugs for type 2 diabetes. Lancet Diabetes Endocrinol. 2016;4:350–359.
  • Davidson JA, Holland WL, Roth MG, et al. Glucagon therapeutics: dawn of a new era for diabetes care. Diabetes Metab Res Rev. 2016;32:660–665.
  • Vuguin PM, Charron MJ. Novel insight into glucagon receptor action: lessons from knockout and transgenic mouse models. Diabetes Obes Metab. 2011;13(Suppl 1):144–150.
  • Charron MJ, Vuguin PM. Lack of glucagon receptor signaling and its implications beyond glucose homeostasis. J Endocrinol. 2015;224:R123–R130.
  • Parker JC, Andrews KM, Allen MR, et al. Glycemic control in mice with targeted disruption of the glucagon receptor gene. Biochem Biophys Res Commun. 2002;290:839–843.
  • Conarello SL, Jiang G, Mu J, et al. Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia. Diabetologia. 2007;50:142–150.
  • Damond N, Thorel F, Moyers JS, et al. Blockade of glucagon signaling prevents or reverses diabetes onset only if residual beta-cells persist. eLife. 2016;5:pii: e13828.
  • Neumann UH, Ho JS, Mojibian M, et al. Glucagon receptor gene deletion in insulin knockout mice modestly reduces blood glucose and ketones but does not promote survival. Mol Metab. 2016;5:731–736.
  • Gelling RW, Du XQ, Dichmann DS, et al. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA. 2003;100:1438–1443.
  • Ali S, Lamont BJ, Charron MJ, et al. Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis. J Clin Invest. 2011;121:1917–1929.
  • Omar BA, Andersen B, Hald J, et al. Fibroblast growth factor 21 (FGF21) and glucagon-like peptide 1 contribute to diabetes resistance in glucagon receptor-deficient mice. Diabetes. 2014;63:101–110.
  • Zhou C, Dhall D, Nissen NN, et al. Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor. Pancreas. 2009;38:941–946.
  • Sipos B, Sperveslage J, Anlauf M, et al. Glucagon cell hyperplasia and neoplasia with and without glucagon receptor mutations. J Clin Endocrinol Metab. 2015;100:E783–E788.
  • Larger E, Wewer Albrechtsen NJ, Hansen LH, et al. Pancreatic alpha-cell hyperplasia and hyperglucagonemia due to a glucagon receptor splice mutation. Endocrinol Diabetes Metab Case Rep. 2016;2016.
  • Yu R. Pancreatic alpha-cell hyperplasia: facts and myths. J Clin Endocrinol Metab. 2014;99:748–756.
  • Longuet C, Robledo AM, Dean ED, et al. Liver-specific disruption of the murine glucagon receptor produces alpha-cell hyperplasia: evidence for a circulating alpha-cell growth factor. Diabetes. 2013;62:1196–1205.
  • Yang J, MacDougall ML, McDowell MT, et al. Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: implications on anti-glucagon therapies for diabetes. BMC Genomics. 2011;12:281.
  • Longuet C, Sinclair EM, Maida A, et al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab. 2008;8:359–371.
  • Berglund ED, Lustig DG, Baheza RA, et al. Hepatic glucagon action is essential for exercise-induced reversal of mouse fatty liver. Diabetes. 2011;60:2720–2729.
  • Ahn JM, Medeiros M, Trivedi D, et al. Development of potent glucagon antagonists: structure-activity relationship study of glycine at position 4. J Pept Res. 2001;58:151–158.
  • Sorensen H, Brand CL, Neschen S, et al. Immunoneutralization of endogenous glucagon reduces hepatic glucose output and improves long-term glycemic control in diabetic ob/ob mice. Diabetes. 2006;55:2843–2848.
  • Brand CL, Jorgensen PN, Svendsen I, et al. Evidence for a major role for glucagon in regulation of plasma glucose in conscious, nondiabetic, and alloxan-induced diabetic rabbits. Diabetes. 1996;45:1076–1083.
  • Liang Y, Osborne MC, Monia BP, et al. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes. 2004;53:410–417.
  • Sloop KW, Cao JX, Siesky AM, et al. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J Clin Invest. 2004;113:1571–1581.
  • van Dongen MG, Geerts BF, Bhanot S, et al. Characterization of a standardized glucagon challenge test as a pharmacodynamic tool in pharmacological research. Horm Metab Res. 2014;46:269–273.
  • McShane LM, Franklin ZJ, O’Harte FP, et al. Ablation of glucagon receptor signaling by peptide-based glucagon antagonists improves glucose tolerance in high fat fed mice. Peptides. 2014;60:95–101.
  • O’Harte FP, Franklin ZJ, Rafferty EP, et al. Characterisation of structurally modified analogues of glucagon as potential glucagon receptor antagonists. Mol Cell Endocrinol. 2013;381:26–34.
  • O’Harte FP, Franklin ZJ, Irwin N. Two novel glucagon receptor antagonists prove effective therapeutic agents in high-fat-fed and obese diabetic mice. Diabetes Obes Metab. 2014;16:1214–1222.
  • Madsen P, Knudsen LB, Wiberg FC, et al. Discovery and structure-activity relationship of the first non-peptide competitive human glucagon receptor antagonists. J Med Chem. 1998;41:5150–5157.
  • Madsen P, Brand CL, Holst JJ, et al. Advances in non-peptide glucagon receptor antagonists. Curr Pharm Des. 1999;5:683–691.
  • Lotfy M, Kalasz H, Szalai G, et al. Recent progress in the use of glucagon and glucagon receptor antagonists in the treatment of diabetes mellitus. Open Med Chem J. 2014;8:28–35.
  • Shen DM, Lin S, Parmee ER. A survey of small molecule glucagon receptor antagonists from recent patents (2006-2010). Expert Opin Ther Pat. 2011;21:1211–1240.
  • Sammons MF, Lee EC. Recent progress in the development of small-molecule glucagon receptor antagonists. Bioorg Med Chem Lett. 2015;25:4057–4064.
  • Filipski KJ. Small molecule glucagon receptor antagonists: a patent review (2011-2014). Expert Opin Ther Pat. 2015;25:819–830.
  • Wu L, Zhai Y, Lu J, et al. Expression, purification and preliminary characterization of glucagon receptor extracellular domain. Protein Expr Purif. 2013;89:232–240.
  • Yang DH, Zhou CH, Liu Q, et al. Landmark studies on the glucagon subfamily of GPCRs: from small molecule modulators to a crystal structure. Acta Pharmacol Sin. 2015;36:1033–1042.
  • Siu FY, He M, de Graaf C, et al. Structure of the human glucagon class B G-protein-coupled receptor. Nature. 2013;499:444–449.
  • Brand CL, Rolin B, Jorgensen PN, et al. Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats. Diabetologia. 1994;37:985–993.
  • Gu W, Yan H, Winters KA, et al. Long-term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha-cell hyperplasia and hyperglucagonemia. J Pharmacol Exp Ther. 2009;331:871–881.
  • Yan H, Gu W, Yang J, et al. Fully human monoclonal antibodies antagonizing the glucagon receptor improve glucose homeostasis in mice and monkeys. J Pharmacol Exp Ther. 2009;329:102–111.
  • Okamoto H, Kim J, Aglione J, et al. Glucagon receptor blockade with a human antibody normalizes blood glucose in diabetic mice and monkeys. Endocrinology. 2015;156:2781–2794.
  • Wang MY, Yan H, Shi Z, et al. Glucagon receptor antibody completely suppresses type 1 diabetes phenotype without insulin by disrupting a novel diabetogenic pathway. Proc Natl Acad Sci USA. 2015;112:2503–2508.
  • Winzell MS, Brand CL, Wierup N, et al. Glucagon receptor antagonism improves islet function in mice with insulin resistance induced by a high-fat diet. Diabetologia. 2007;50:1453–1462.
  • Mu J, Jiang G, Brady E, et al. Chronic treatment with a glucagon receptor antagonist lowers glucose and moderately raises circulating glucagon and glucagon-like peptide 1 without severe alpha cell hypertrophy in diet-induced obese mice. Diabetologia. 2011;54:2381–2391.
  • Okamoto H, Cavino K, Na E, et al. Glucagon receptor inhibition normalizes blood glucose in severe insulin-resistant mice. Proc Natl Acad Sci USA. 2017;114:2753–2758.
  • Steenberg VR, Jensen SM, Pedersen J, et al. Acute disruption of glucagon secretion or action does not improve glucose tolerance in an insulin-deficient mouse model of diabetes. Diabetologia. 2016;59:363–370.
  • Dean ED, Unger RH, Holland WL. Glucagon antagonism in islet cell proliferation. Proc Natl Acad Sci USA. 2017;114:3006–3008.
  • Colca JR. Discontinued drug therapies to treat diabetes in 2014. Expert Opin Investig Drugs. 2015;24:1241–1245.
  • Petersen KF, Sullivan JT. Effects of a novel glucagon receptor antagonist (Bay 27-9955) on glucagon-stimulated glucose production in humans. Diabetologia. 2001;44:2018–2024.
  • Xiong Y, Guo J, Candelore MR, et al. Discovery of a novel glucagon receptor antagonist N-[(4-{(1S)-1-[3-(3, 5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbo nyl]-beta-alanine (MK-0893) for the treatment of type II diabetes. J Med Chem. 2012;55:6137–6148.
  • Ruddy M, Pramanik B, Lunceford J, et al. Inhibition of glucagon-induced hyperglycemia predicts glucose lowering efficacy of a glucagon receptor antagonist, MK-0893, in type 2 diabetes (T2DM) (Abstract 311-OR). Diabetes. 2011;60(Suppl 1):A85–A86.
  • Engel S, Xu L, Andryuk P, et al. Efficacy and tolerability of MK-0893, a glucagon receptor antagonist (GRA), in patients with type 2 diabetes (T2DM). Diabetes. 2011;60(Suppl 1):A85, 309–OR.
  • Engel S, Teng R, Edwards R, et al. Efficacy and safety of the glucagon receptor antagonist, MK-0893, in combination with metformin or sitagliptin in patients with type 2 diabetes mellitus. Diabetologia. 2011;54(Suppl):S86–S87.
  • Engel SS, Reitman ML, Xu L, et al. Glycemic and lipid effects of the short-acting glucagon receptor antagonist MK-3577 in patients with type 2 diabetes. Diabetes. 2012;61(Suppl 1):A266, Abstract 1037–P.
  • Kazda CM, Ding Y, Kelly RP, et al. Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care. 2016;39:1241–1249.
  • Guzman CB, Zhang XM, Liu R, et al. Treatment with LY2409021, a glucagon receptor antagonist, increases liver fat in patients with type 2 diabetes. Diabetes Obes Metab. 2017;19:1521–1528.
  • Tham LS, Abu-Raddad EJ, Lim CN, et al. The glucagon receptor antagonist LY2409021 attenuates increases in hepatic glucose output (HGO) and blood glucose during hyperglucagonemia in healthy male patients). Diabetes. 2011;60:A115, Abstract 416–PP.
  • Troyer MD, Hompesch M, Pramanik B, et al. Recovery from hypoglycemia in healthy subjects is preserved despite glucagon receptor blockade by MK-0893. Diabetes. 2011;60(Suppl 1):Abstract 494–P.
  • Peng JZ, Denney WS, Musser BJ, et al. A semi-mechanistic model for the effects of a novel glucagon receptor antagonist on glucagon and the interaction between glucose, glucagon, and insulin applied to adaptive phase II design. Aaps J. 2014;16:1259–1270.
  • Kelly R, Lim C, Pratt E, et al. Glucagon receptor antagonist LY2409021 does not delay recovery from insulin induced hypoglycaemia in patients with type 2 diabetes mellitus. Diabetologia. 2012;55(Suppl):S337–S38.
  • Kelly RP, Garhyan P, Raddad E, et al. Short-term administration of the glucagon receptor antagonist LY2409021 lowers blood glucose in healthy people and in those with type 2 diabetes. Diabetes Obes Metab. 2015;17:414–422.
  • Kazda CM, Frias J, Foga I, et al. Treatment with the glucagon receptor antagonist LY2409021 increases ambulatory blood pressure in patients with type 2 diabetes. Diabetes Obes Metab. 2017;19:1071–1077.
  • Guzman-Perez A, Pfefferkorn JA, Lee EC, et al. The design and synthesis of a potent glucagon receptor antagonist with favorable physicochemical and pharmacokinetic properties as a candidate for the treatment of type 2 diabetes mellitus. Bioorg Med Chem Lett. 2013;23:3051–3058.
  • Kazierad DJ, Bergman A, Tan B, et al. Effects of multiple ascending doses of the glucagon receptor antagonist PF-06291874 in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2016;18:795–802.
  • Bergman A, Tan B, Somayaji VR, et al. A 4-week study assessing the pharmacokinetics, pharmacodynamics, safety, and tolerability of the glucagon receptor antagonist PF-06291874 administered as monotherapy in subjects with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2017;126:95–104.
  • Calle RA, Bergman A, Somayaji V, et al. Efficacy and safety of PF-06291874 (PF), a glucagon receptor antagonist administered for 12 weeks to patients with type 2 diabetes mellitus (T2DM) on background metformin therapy (abstract). Diabetes. 2017;66(Suppl):A327,Abstract 1223–P.
  • Vajda EG, Logan D, Lasseter K, et al. Pharmacokinetics and pharmacodynamics of single and multiple doses of the glucagon receptor antagonist LGD-6972 in healthy subjects and subjects with type 2 diabetes mellitus. Diabetes Obes Metab. 2017;19:24–32.
  • Kelly RP, Garhyan P, Reynolds VL, et al. Glucagon receptor antibody LY2786890 reduced glucose levels in type 2 diabetes mellitus patients. Diabetes. 2015;64:LB27 (abstract 106-LB).
  • Gumbiner B, Esteves B, Dell V, et al. Robust glucose and A1c lowering after a single dose of RN909 (PF-06293620) in type 2 diabetes (T2D) [Abstract 110-LB]. Diabetes. 2016;65:LB30, Abstract 110–LB.
  • Pettus J. REMD-477, a human glucagon receptor (GCGR) antibody, reduces daily insulin requirements and improves glycemic control in people with type 1 diabetes (T1D). Oral presentation at the 77th Annual meeting the American Diabetes Association; 2017 Jun 13; San Diego. (378-OR).
  • Morgan E, Smith A, Watts L, et al. ISIS-GCGRRX, an antisense glucagon receptor antagonist, caused rapid, robust, and sustained improvements in glycemic control without changes in BW, BP, lipids, or hypoglycemia in T2DM patients on stable metformin therapy (Abstract 109-LB). Diabetes. 2014;63:LB28,Abstract 109–LB. (Late-Breaking Abstract Presented at the 74th Annual Meeting of the American Diabetes Association; June 13–17, 2014; San Francisco).
  • Vajda EG, Potter SC, Fujitaki JM, et al. LGD-6972, a potent, orally-bioavailable, small molecule glucagon receptor antagonist for the treatment of type 2 diabetes. Diabetes. 2012;61(Suppl):A252.
  • Vajda EG, Zhi L, Marschke KB. Glucagon receptor antagonist LGD-6972 is efficacious in streptozotocin-induced diabetic mice. Diabetes. 2013;62(Suppl):A290.
  • Morgan E, Bethune C, Watts L, et al. Reduction of hepatic glucagon receptor expression with an antisense drug (ISIS-GCGRRX) increases total GLP-1 levels without affecting cholesterol or BP in normal subjects. Diabetologia. 2013;56(Suppl 1):S280, Abstract 691.
  • Luu KT, Morgan ES, Bhanot S, et al. Population pharmacokinetics and pharmacodynamics of IONIS-GCGRRx, an antisense oligonucleotide for type 2 diabetes mellitus: a red blood cell lifespan model. J Pharmacokinet Pharmacodyn. 2017;44:179–191.
  • Morgan E, Tai L, Jung SB, et al. Low weekly doses of IONIS-GCGRRX, a second-generation antisense glucagon receptor antagonist, caused significant improvements in glycemic control in T2DM patients on stable metformin therapy. Diabetes. 2017;66:A308–A309,Abstract 1158-P.
  • van Dongen MG, Geerts BF, Morgan ES, et al. First proof of pharmacology in humans of a novel glucagon receptor antisense drug. J Clin Pharmacol. 2015;55:298–306.
  • Henderson SJ, Konkar A, Hornigold DC, et al. Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes Obes Metab. 2016;18:1176–1190.
  • Scheen AJ, Paquot N. A new paradigm for treating obesity and diabetes mellitus. Nat Rev Endocrinol. 2015;11:196–198.
  • Guan HP, Yang X, Lu K, et al. Glucagon receptor antagonism induces increased cholesterol absorption. J Lipid Res. 2015;56:2183–2195.
  • Holst JJ, Wewer Albrechtsen NJ, Pedersen J, et al. Glucagon and amino acids are linked in a mutual feedback cycle: the liver-alpha-cell axis. Diabetes. 2017;66:235–240.
  • Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75:33–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.