350
Views
10
CrossRef citations to date
0
Altmetric
Review

Glutamate receptor antagonists with the potential for migraine treatment

ORCID Icon, &
Pages 1321-1330 | Received 16 Jan 2017, Accepted 18 Oct 2017, Published online: 27 Oct 2017

References

  • Steiner TJ, Stovner LJ, Birbeck GL. Migraine: the seventh disabler. J Headache Pain. 2013;14:1.
  • Headache Classification Committee of the International Headache Society (IHS). The international classification of headache disorders, 3rd edition (beta version). Cephalalgia. 2013;33:629–808.
  • Lanteri-Minet M. Economic burden and costs of chronic migraine. Curr Pain Headache Rep. 2014;18:385.
  • Goadsby PJ, Holland PR, Martins-Oliveira M, et al. Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev. 2017;97:553–622.
  • Geppetti P, Rossi E, Chiarugi A, et al. Antidromic vasodilatation and the migraine mechanism. J Headache Pain. 2012;13:103–111.
  • Edvinsson L, Uddman R. Neurobiology in primary headaches. Brain Res Brain Res Rev. 2005;48:438–456.
  • Williamson DJ, Hargreaves RJ. Neurogenic inflammation in the context of migraine. Microsc Res Tech. 2001;53:167–178.
  • Noseda R, Burnstein R. Migraine pathophysiology: anatomy of the trigeminovascular, pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain. 2013;154:S44–S53.
  • Coppola G, Schoenen J. Cortical excitability in chronic migraine. Curr Pain Headache Rep. 2012;16:93–100.
  • Ferrari MD, Klever RR, Terwindt GM, et al. Migraine pathophysiology: lessons from mouse models and human genetics. Lancet Neurol. 2015;14:65–80.
  • Zhang X, Levy D, Kainz V, et al. Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol. 2011;69:855–865.
  • Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62:405–496.
  • Shatillo A, Salo RA, Giniatullina R, et al. Involvement of NMDA receptor subtypes in cortical spreading depression in rats assessed by fMRI. Neuropharmacology. 2015;93:164–170.
  • Boye Larsen D, Ingemann Kristensen G, Panchalingam V, et al. Investigating the expression of metabotropic glutamate receptors in trigeminal ganglion neurons and satellite glial cells: implications for craniofacial pain. J Recept Signal Transduct Res. 2014;34:261–269.
  • Andreou AP, Holland PR, Lasalandra MP, et al. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors. Pain. 2015;156:439–450.
  • Salt TE, Eaton SA. Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus. Prog Neurobiol. 1996;48:55–72.
  • Newsholme P, Procopio J, Lima MM, et al. Glutamine and glutamate – their central role in cell metabolism and function. Cell Biochem Funct. 2003;21:1–9.
  • Vandenberg RJ, Ryan RM. Mechanisms of glutamate transport. Physiol Rev. 2013;93:1621–1657.
  • Collingridge GL, Olsen RW, Peters J, et al. A nomenclature for ligand-gated ion channels. Neuropharmacology. 2009;56:2–5.
  • Zhou Q, Sheng M. NMDA receptors in nervous system diseases. Neuropharmacology. 2013;74:69–75.
  • Formicola D, Aloia A, Sampaolo S, et al. Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility. BMC Med Genet. 2010;11:103.
  • Maher BH, Lea RA, Follett J, et al. Association of a GRIA3 gene polymorphism with migraine in an Australian case-control cohort. Headache. 2013;53:1245–1249.
  • Andreou AP, Goadsby PJ. Therapeutic potential of novel glutamate receptor antagonists in migraine. Expert Opin Investig Drugs. 2009;18:789–803.
  • Chan K, MaassenVanDenBrink A. Glutamate receptor antagonists in the management of migraine. Drugs. 2014;74:1165–1176.
  • Tajti J, Majlath Z, Szok D, et al. Novel kynurenic acid analogues in the treatment of migraine and neurodegenerative disorders: preclinical studies and pharmaceutical design. Curr Pharm Des. 2015;21:2250–2258.
  • Salomone S, Caraci F, Capasso A. Migraine: an overview. Open Neurol J. 2009;3:64–71.
  • Pinheiro PS, Mulle C. Presynaptic glutamate receptors: physiological functions and mechanism of action. Nat Rev Neurosci. 2008;9:423–436.
  • van de Ven RCG, Kaja S, Plomp JJ, et al. Genetic models of migraine. Arch Neurol. 2007;64:643–646.
  • Gasparini CF, Smith RA, Griffiths LR. Genetic insights into migraine and glutamate: a protagonist driving the headache. J Neurol Sci. 2016;367:258–268.
  • Chasman DI, Schürks M, Anttila V, et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet. 2011;43:695–698.
  • Lazarov NE. Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol. 2002;66:19–59.
  • Inoue A, Uchida H, Nakazawa T, et al. Phosphorylation of NMDA receptor GluN2B subunit at Tyr1472 is important for trigeminal processing of itch. Eur J Neurosci. 2016;44:2474–2482.
  • Storer RJ, Goadsby PJ. Trigeminovascular nociceptive transmission involves N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptors. Neuroscience. 1999;90:1371–1376.
  • Conte A, Barbanti P, Frasca V, et al. Differences in short-term primary motor cortex synaptic potentiation as assessed by repetitive transcranial magnetic stimulation in migraine patients with and without aura. Pain. 2010;148:43–48.
  • Khodorova A, Richter J, Vasko MR, et al. Early and late contributions of glutamate and CGRP to mechanical sensitization by endothelin-1. J Pain. 2009;10:740–749.
  • Lee J, Ro JY. Differential regulation of glutamate receptors in trigeminal ganglia following masseter inflammation. Neurosci Lett. 2007;421:91–95.
  • Classey JD, Knight YE, Goadsby PJ. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity within the trigeminocervical complex following superior sagittal sinus stimulation in the cat. Brain Res. 2001;907:117–124.
  • Samengo IA, Currò D, Martire M. Nicotinic receptors modulate the function of presynaptic AMPA receptors on glutamatergic nerve terminals in the trigeminal caudal nucleus. Neurochem Int. 2015;90:166–172.
  • Martínez F, Castillo J, Rodríguez JR, et al. Neuroexcitatory amino acid levels in plasma and cerebrospinal fluid during migraine attacks. Cephalalgia. 1993;13:89–93.
  • González de la Aleja J, Ramos A, Mato-Abad V, et al. Higher glutamate to glutamine ratios in occipital regions in women with migraine during the interictal state. Headache. 2013;53:365–375.
  • Andreou AP, Goadsby PJ. Topiramate in the treatment of migraine: a kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia. 2011;31:1343–1358.
  • Storer RJ, Goadsby PJ. Topiramate inhibits trigeminovascular neurons in the cat. Cephalalgia. 2004;24:1049–1056.
  • Storer RJ, Goadsby PJ. Topiramate is likely to act outside of the trigeminocervical complex. Cephalalgia. 2013;33:291–300.
  • Seo HJ, Chiesa A, Lee SJ, et al. Safety and tolerability of lamotrigine: results from 12 placebo-controlled clinical trials and clinical implications. Clin Neuropharmacol. 2011;34:39–47.
  • Mion G, Villevieille T. Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther. 2013;19:370–380.
  • Persson J. Ketamine in pain management. CNS Neurosci Ther. 2013;19:396–402.
  • Chan KY, Gupta S, de Vries R, et al. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model. Br J Pharmacol. 2010;160:1316–1325.
  • Gorelova NA, Koroleva VI, Amemori T, et al. Ketamine blockade of cortical spreading depression in rats. Electroencephalogr Clin Neurophysiol. 1987;66:440–447.
  • Hernándéz-Cáceres J, Macias-González R, Brozek G, et al. Systemic ketamine blocks cortical spreading depression but does not delay the onset of terminal anoxic depolarization in rats. Brain Res. 1987;437:360–364.
  • Marrannes R, Willems R, De Prins E, et al. Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res. 1988;457:226–240.
  • Amemori T, Bures J. Ketamine blockade of spreading depression: rapid development of tolerance. Brain Res. 1990;519:351–354.
  • Rashidy-Pour A, Motaghed-Larijani Z, Bures J. Tolerance to ketamine-induced blockade of cortical spreading depression transfers to MK-801 but not to AP5 in rats. Brain Res. 1995;693:64–69.
  • Verhaegen M, Todd MM, Warner DS. The influence of different concentrations of volatile anesthetics on the threshold for cortical spreading depression in rats. Brain Res. 1992;581:153–155.
  • Sánchez-Porras R, Santos E, Schöll M, et al. The effect of ketamine on optical and electrical characteristics of spreading depolarizations in gyrencephalic swine cortex. Neuropharmacology. 2014;84:52–61.
  • Sánchez-Porras R, Santos E, Schöll M, et al. Ketamine modulation of the haemodynamic response to spreading depolarization in the gyrencephalic swine brain. J Cereb Blood Flow Metab. 2017;37:1720–1734.
  • Huang L, Bocek M, Jordan JK, et al. Memantine for the prevention of primary headache disorders. Ann Pharmacother. 2014;48:1507–1511.
  • Kayser V, Latrémolière A, Hamon M, et al. N-methyl-D-aspartate receptor-mediated modulations of the anti-allodynic effects of 5-HT1B/1D receptor stimulation in a rat model of trigeminal neuropathic pain. Eur J Pain. 2011;15:451–458.
  • Park JW, Suh GI, Shin HE, et al. Influence of memantine on nociceptive responses of the trigeminocervical complex after formalin injection. Cephalalgia. 2012;32:308–316.
  • Tipton AF, Tarash I, McGuire B, et al. The effects of acute and preventive migraine therapies in a mouse model of chronic migraine. Cephalalgia. 2016;36:1048–1056.
  • Gomez-Mancilla B, Brand R, Jürgens TP, et al. Randomized, multicenter trial to assess the efficacy, safety and tolerability of a single dose of a novel AMPA receptor antagonist BGG492 for the treatment of acute migraine attacks. Cephalalgia. 2014;34:103–113.
  • Sang CN, Ramadan NM, Wallihan RG, et al. LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia. 2004;24:596–602.
  • Wallace MS, Lam V, Schettler J. NGX426, an oral AMPA-kainate antagonist, is effective in human capsaicin-induced pain and hyperalgesia. Pain Med. 2012;13:1601–1610.
  • Lee HJ, Pogatzki-Zahn EM, Brennan TJ. The effect of the AMPA/kainate receptor antagonist LY293558 in a rat model of postoperative pain. J Pain. 2006;7:768–777.
  • Jin HC, Keller AJ, Jung JK, et al. Epidural tezampanel, an AMPA/kainate receptor antagonist, produces postoperative analgesia in rats. Anesth Analg. 2007;105:1152–1159.
  • Weiss B, Alt A, Ogden AM, et al. Pharmacological characterization of the competitive GLUK5 receptor antagonist decahydroisoquinoline LY466195 in vitro and in vivo. J Pharmacol Exp Ther. 2006;318:772–781.
  • Marin JC, Goadsby PJ. Glutamatergic fine tuning with ADX-10059: a novel therapeutic approach for migraine? Expert Opin Investig Drugs. 2010;19:555–561.
  • Waung MW, Akerman S, Wakefield M, et al. Metabotropic glutamate receptor 5: a target for migraine therapy. Ann Clin Transl Neurol. 2016;3:560–571.
  • Kaube H, Herzog J, Käufer T, et al. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology. 2000;55:139–141.
  • Afridi SK, Giffin NJ, Kaube H, et al. A randomized controlled trial of intranasal ketamine in migraine with prolonged aura. Neurology. 2013;80:642–647.
  • Lauritsen C, Mazuera S, Lipton RB, et al. Intravenous ketamine for subacute treatment of refractory chronic migraine: a case series. J Headache Pain. 2016;17:106.
  • Pomeroy JL, Marmura MJ, Nahas SJ, et al. Ketamine infusions for treatment refractory headache. Headache. 2016. [Epub ahead of print]. DOI:10.1111/head.13013.
  • Charles A, Flippen C, Romero Reyes M, et al. Memantine for prevention of migraine: a retrospective study of 60 cases. J Headache Pain. 2007;8:248–250.
  • Bigal M, Rapoport A, Sheftell F, et al. Memantine in the preventive treatment of refractory migraine. Headache. 2008;48:1337–1342.
  • Noruzzadeh R, Modabbernia A, Aghamollaii V, et al. Memantine for prophylactic treatment of migraine without aura: a randomized double-blind placebo-controlled study. Headache. 2016;56:95–103.
  • Johnson KW, Nisenbaum ES, Johnson MP, et al. Innovative drug development for headache disorders: glutamate. In: Olesen J, Ramadan NMeditors. Frontiers in headache research. New York: Oxford; 2008. p. 185–194.
  • Zhang XL, Shuttleworth CW, Moskal JR, et al. Suppression of spreading depolarization and stabilization of dendritic spines by GLYX-13, an NMDA receptor glycine-site functional partial agonist. Exp Neurol. 2015;273:312–321.
  • Sánchez-Porras R, Zheng Z, Sakowitz OW. Pharmacological modulation of spreading depolarizations. Acta Neurochir Suppl. 2015;120:153–157.
  • Chen SR, Samoriski G, Pan HL. Antinociceptive effects of chronic administration of uncompetitive NMDA receptor antagonists in a rat model of diabetic neuropathic pain. Neuropharmacology. 2009;57:121–126.
  • Takeda K, Muramatsu M, Chikuma T, et al. Effect of memantine on the levels of neuropeptides and microglial cells in the brain regions of rats with neuropathic pain. J Mol Neurosci. 2009;39:380–390.
  • Ferrari A, Tiraferri I, Neri L, et al. Why pharmacokinetic differences among oral triptans have little clinical importance: a comment. J Headache Pain. 2011;12:5–12.
  • Vécsei L, Majláth Z, Balog A, et al. Drug targets of migraine and neuropathy: treatment of hyperexcitability. CNS Neurol Disord Drug Targets. 2015;14:664–676.
  • Burnstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35:6619–6629.
  • Schytz HW, Hargreaves R, Ashina M. Challenges in developing drugs for primary headaches. Prog Neurobiol. 2017;152:70–88.
  • Olesen J, Ashina M. Emerging migraine treatments and drug targets. Trends Pharmacol Sci. 2011;32:352–359.
  • Vikelis M, Mitsikostas DD. The role of glutamate and its receptors in migraine. CNS Neurol Disord Drug Targets. 2007;6:251–257.
  • Ferrari A, Ottani A, Bertolini A, et al. Adverse reactions related to drugs for headache treatment: clinical impact. Eur J Clin Pharmacol. 2005;60:893–900.
  • Baltan S, Besancon EF, Mbow B, et al. White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J Neurosci. 2008;28:1479–1489.
  • Chao N, Li ST. Synaptic and extrasynaptic glutamate signaling in ischemic stroke. Curr Med Chem. 2014;21:2043–2064.
  • Castillo J, Loza MI, Mirelman D, et al. A novel mechanism of neuroprotection: blood glutamate grabber. J Cereb Blood Flow Metab. 2016;36:292–301.
  • Krzyzanowska W, Pomierny B, Filip M, et al. Glutamate transporters in brain ischemia: to modulate or not? Acta Pharmacol Sin. 2014;35:444–462.
  • Khanna S, Briggs Z, Rink C. Inducible glutamate oxaloacetate transaminase as a therapeutic target against ischemic stroke. Antioxid Redox Signal. 2015;22:175–186.
  • Greco R, Demartini C, Zanaboni AM, et al. Effects of kynurenic acid analogue 1 (KYNA-A1) in nitroglycerin-induced hyperalgesia: targets and anti-migraine mechanisms. Cephalalgia. 2016. doi: 10.1177/0333102416678000;pii:0333102416678000. [Epub ahead of print].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.