388
Views
15
CrossRef citations to date
0
Altmetric
Review

Spotlight on Bortezomib: potential in the treatment of hepatocellular carcinoma

, , , , , & show all
Pages 7-18 | Received 02 Apr 2018, Accepted 20 Nov 2018, Published online: 30 Nov 2018

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017 Jan;67(1):7–30. PubMed PMID: 28055103; eng.
  • Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003 Dec;362(9399):1907–1917. PubMed PMID: 14667750; eng.
  • El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007 Jun;132(7):2557–2576. PubMed PMID: 17570226; eng.
  • Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol. 2013 Jul;47 Suppl:S2–S6. PubMed PMID: 23632345; PubMed Central PMCID: PMCPMC3683119. eng.
  • Perz JF, Armstrong GL, Farrington LA, et al. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006 Oct;45(4):529–538. PubMed PMID: 16879891; eng.
  • El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011 Sep;365(12):1118–1127. PubMed PMID: 21992124; eng.
  • Schwartz M, Roayaie S, Konstadoulakis M. Strategies for the management of hepatocellular carcinoma. Nat Clin Pract Oncol. 2007 Jul;4(7):424–432. PubMed PMID: 17597707; eng.
  • Belghiti J, Kianmanesh R. Surgical treatment of hepatocellular carcinoma. HPB (Oxford). 2005;7(1):42–49. PubMed PMID: 18333160; PubMed Central PMCID: PMCPMC2023921. eng.
  • Singal AG, Pillai A, Tiro J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med. 2014 Apr;11(4):e1001624. PubMed PMID: 24691105; PubMed Central PMCID: PMCPMC3972088. eng.
  • Rhim H, Lim HK. Radiofrequency ablation of hepatocellular carcinoma: pros and cons. Gut Liver. 2010 Sep;4 Suppl 1:S113–S118. PubMed PMID: 21103289; PubMed Central PMCID: PMCPMC2989542. eng.
  • Poon RT, Fan ST, Lo CM, et al. Long-term survival and pattern of recurrence after resection of small hepatocellular carcinoma in patients with preserved liver function: implications for a strategy of salvage transplantation. Ann Surg. 2002 Mar;235(3):373–382. PubMed PMID: 11882759; PubMed Central PMCID: PMCPMC1422443. eng.
  • Shah SA, Cleary SP, Wei AC, et al. Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes. Surgery. 2007 Mar;141(3):330–339. PubMed PMID: 17349844; eng.
  • Tabrizian P, Jibara G, Shrager B, et al. Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis. Ann Surg. 2015 May;261(5):947–955. PubMed PMID: 25010665; eng.
  • Marsh JW, Dvorchik I, Subotin M, et al. The prediction of risk of recurrence and time to recurrence of hepatocellular carcinoma after orthotopic liver transplantation: a pilot study. Hepatology. 1997 Aug;26(2):444–450. PubMed PMID: 9252157; eng.
  • Roayaie S, Schwartz JD, Sung MW, et al. Recurrence of hepatocellular carcinoma after liver transplant: patterns and prognosis. Liver Transpl. 2004 Apr;10(4):534–540. PubMed PMID: 15048797; eng.
  • Yoo HY, Patt CH, Geschwind JF, et al. The outcome of liver transplantation in patients with hepatocellular carcinoma in the United States between 1988 and 2001: 5-year survival has improved significantly with time. J Clin Oncol. 2003 Dec;21(23):4329–4335. PubMed PMID: 14581446; eng.
  • Deng GL, Zeng S, Shen H. Chemotherapy and target therapy for hepatocellular carcinoma: new advances and challenges. World J Hepatol. 2015 Apr;7(5):787–798. PubMed PMID: 25914779; PubMed Central PMCID: PMCPMC4404384. eng.
  • Chen KW, Ou TM, Hsu CW, et al. Current systemic treatment of hepatocellular carcinoma: a review of the literature. World J Hepatol. 2015 Jun;7(10):1412–1420. PubMed PMID: 26052386; PubMed Central PMCID: PMCPMC4450204. eng.
  • Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009 Jan;10(1):25–34. PubMed PMID: 19095497; eng.
  • Mir N, Jayachandran A, Dhungel B, et al. Epithelial-to-mesenchymal transition: a mediator of Sorafenib resistance in advanced hepatocellular carcinoma. Curr Cancer Drug Targets. 2017;17(8):698–706. PubMed PMID: 28460616; eng.
  • Zhang P, Yang Y, Wen F, et al. Cost-effectiveness of sorafenib as a first-line treatment for advanced hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2015 Jul;27(7):853–859. PubMed PMID: 25919775; eng.
  • Chen D, Frezza M, Schmitt S, et al. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets. 2011 Mar;11(3):239–253. PubMed PMID: 21247388; PubMed Central PMCID: PMCPMC3306611. eng.
  • Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol. 1995 Apr;7(2):215–223. PubMed PMID: 7612274; eng.
  • Chen D, Dou QP. The ubiquitin-proteasome system as a prospective molecular target for cancer treatment and prevention. Curr Protein Pept Sci. 2010 Sep;11(6):459–470. PubMed PMID: 20491623; PubMed Central PMCID: PMCPMC3306609. eng.
  • Accardi F, Toscani D, Bolzoni M, et al. Mechanism of action of Bortezomib and the new proteasome inhibitors on myeloma cells and the bone microenvironment: impact on myeloma-induced alterations of bone remodeling. Biomed Res Int. 2015;2015:1–13. PubMed PMID: 26579531; PubMed Central PMCID: PMCPMC4633537. eng.
  • Baiz D, Pozzato G, Dapas B, et al. Bortezomib arrests the proliferation of hepatocellular carcinoma cells HepG2 and JHH6 by differentially affecting E2F1, p21 and p27 levels. Biochimie. 2009 Mar;91(3):373–382. PubMed PMID: 19041685; eng.
  • Chen KF, Yeh PY, Yeh KH, et al. Down-regulation of phospho-Akt is a major molecular determinant of bortezomib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res. 2008 Aug;68(16):6698–6707. PubMed PMID: 18701494; eng.
  • Wu YX, Yang JH, Saitsu H. Bortezomib-resistance is associated with increased levels of proteasome subunits and apoptosis-avoidance. Oncotarget. 2016 Nov;7(47):77622–77634. PubMed PMID: 27769058; PubMed Central PMCID: PMCPMC5363609. eng.
  • Farra R, Dapas B, Baiz D, et al. Impairment of the Pin1/E2F1 axis in the anti-proliferative effect of bortezomib in hepatocellular carcinoma cells. Biochimie. 2015 May;112:85–95. PubMed PMID: 25742740; eng.
  • Hou J, Cui A, Song P, et al. Reactive oxygen species-mediated activation of the Src-epidermal growth factor receptor-Akt signaling cascade prevents bortezomib-induced apoptosis in hepatocellular carcinoma cells. Mol Med Rep. 2015 Jan;11(1):712–718. PubMed PMID: 25338626; eng.
  • Yu HC, Hou DR, Liu CY, et al. Cancerous inhibitor of protein phosphatase 2A mediates bortezomib-induced autophagy in hepatocellular carcinoma independent of proteasome. PLoS One. 2013;8(2):e55705. PubMed PMID: 23383345; PubMed Central PMCID: PMCPMC3562236. eng.
  • Hengartner MO. The biochemistry of apoptosis. Nature. 2000 Oct;407(6805):770–776. PubMed PMID: 11048727; eng.
  • Chen KF, Liu CY, Lin YC, et al. CIP2A mediates effects of bortezomib on phospho-Akt and apoptosis in hepatocellular carcinoma cells. Oncogene. 2010 Nov;29(47):6257–6266. PubMed PMID: 20729919; eng.
  • Khanna A, Pimanda JE, Westermarck J. Cancerous inhibitor of protein phosphatase 2A, an emerging human oncoprotein and a potential cancer therapy target. Cancer Res. 2013 Nov;73(22):6548–6553. PubMed PMID: 24204027; eng.
  • Saidak Z, Giacobbi AS, Louandre C, et al. Mathematical modelling unveils the essential role of cellular phosphatases in the inhibition of RAF-MEK-ERK signalling by sorafenib in hepatocellular carcinoma cells. Cancer Lett. 2017 Apr;392:1–8. PubMed PMID: 28161506; eng.
  • Calvaruso G, Giuliano M, Portanova P, et al. Hsp72 controls bortezomib-induced HepG2 cell death via interaction with pro-apoptotic factors. Oncol Rep. 2007 Aug;18(2):447–450. PubMed PMID: 17611669; eng.
  • Ingham M, Schwartz GK. Cell-cycle therapeutics come of age. J Clin Oncol. 2017 Sep;35(25):2949–2959. PubMed PMID: 28580868; eng.
  • Pucci B, Kasten M, Giordano A. Cell cycle and apoptosis. Neoplasia. 2000 Jul-Aug;2(4):291–299. PubMed PMID: 11005563; PubMed Central PMCID: PMCPMC1550296. eng.
  • Saeki I, Terai S, Fujisawa K, et al. Bortezomib induces tumor-specific cell death and growth inhibition in hepatocellular carcinoma and improves liver fibrosis. J Gastroenterol. 2013 Jun;48(6):738–750. PubMed PMID: 23011081; eng.
  • Yang Z, Liu S, Zhu M, et al. PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway. Sci Rep. 2016 Feb;6:22090. PubMed PMID: 26915315; PubMed Central PMCID: PMCPMC4768146. eng.
  • Dick FA, Rubin SM. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol. 2013 May;14(5):297–306. PubMed PMID: 23594950; PubMed Central PMCID: PMCPMC4754300. eng.
  • Chatterjee SJ, George B, Goebell PJ, et al. Hyperphosphorylation of pRb: a mechanism for RB tumour suppressor pathway inactivation in bladder cancer. J Pathol. 2004 Jul;203(3):762–770. PubMed PMID: 15221935; eng.
  • Baiz D, Dapas B, Farra R, et al. Bortezomib effect on E2F and cyclin family members in human hepatocellular carcinoma cell lines. World J Gastroenterol. 2014 Jan;20(3):795–803. PubMed PMID: 24574752; PubMed Central PMCID: PMCPMC3921488. eng.
  • Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009 Apr;9(4):265–273. PubMed PMID: 19262571; eng.
  • Rao SR, Jayachandran A. Epithelial-to-mesenchymal transition as a potential target for antineoplastic therapies. J Cancer Clin Trials. 2015;1(e103):1–3.
  • Giannelli G, Koudelkova P, Dituri F, et al. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol. 2016 Oct;65(4):798–808. PubMed PMID: 27212245; eng.
  • Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science. 2013 Nov;342(6159):1234850. PubMed PMID: 24202173; eng.
  • Jayachandran A, Anaka M, Prithviraj P, et al. Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget. 2014 Jul;5(14):5782–5797. PubMed PMID: 25051363; PubMed Central PMCID: PMCPMC4170613. eng.
  • Ko BS, Chang TC, Chen CH, et al. Bortezomib suppresses focal adhesion kinase expression via interrupting nuclear factor-kappa B. Life Sci. 2010 Jan;86(5–6):199–206. PubMed PMID: 20006625; eng.
  • Morrison BJ, Morris JC, Steel JC. Lung cancer-initiating cells: a novel target for cancer therapy. Target Oncol. 2013 Sep;8(3):159–172. PubMed PMID: 23314952; PubMed Central PMCID: PMCPMC3763165. eng.
  • Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010 Aug;29(34):4741–4751. PubMed PMID: 20531305; PubMed Central PMCID: PMCPMC3176718. eng.
  • Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. J Hematol Oncol. 2016 Aug;9(1):74. PubMed PMID: 27578206; PubMed Central PMCID: PMCPMC5006452. eng.
  • Jayachandran A, Shrestha R, Dhungel B, et al. Murine hepatocellular carcinoma derived stem cells reveal epithelial-to-mesenchymal plasticity. World J Stem Cells. 2017 Sep;9(9):159–168. PubMed PMID: 29026462; PubMed Central PMCID: PMCPMC5620425. eng.
  • Kawai T, Yasuchika K, Ishii T, et al. Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma. Clin Cancer Res. 2015 Jul;21(13):3081–3091. PubMed PMID: 25820415; eng.
  • Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–274. PubMed PMID: 15771571; eng.
  • Armeanu S, Krusch M, Baltz KM, et al. Direct and natural killer cell-mediated antitumor effects of low-dose bortezomib in hepatocellular carcinoma. Clin Cancer Res. 2008 Jun;14(11):3520–3528. PubMed PMID: 18519785; eng.
  • Pekol T, Daniels JS, Labutti J, et al. Human metabolism of the proteasome inhibitor bortezomib: identification of circulating metabolites. Drug Metab Dispos. 2005 Jun;33(6):771–777. PubMed PMID: 15764713; eng.
  • Aghajanian C, Soignet S, Dizon DS, et al. A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res. 2002 Aug;8(8):2505–2511. PubMed PMID: 12171876; eng.
  • Kondagunta GV, Drucker B, Schwartz L, et al. Phase II trial of bortezomib for patients with advanced renal cell carcinoma. J Clin Oncol. 2004 Sep;22(18):3720–3725. PubMed PMID: 15365068; eng.
  • Kim GP, Mahoney MR, Szydlo D, et al. An international, multicenter phase II trial of bortezomib in patients with hepatocellular carcinoma. Invest New Drugs. 2012 Feb;30(1):387–394. PubMed PMID: 20839030; PubMed Central PMCID: PMCPMC3896232. eng.
  • McConkey DJ, Zhu K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat. 2008 Aug-Oct;11(4–5):164–179. PubMed PMID: 18818117; eng.
  • Chen KF, Yeh PY, Hsu C, et al. Bortezomib overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells in part through the inhibition of the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem. 2009 Apr;284(17):11121–11133. PubMed PMID: 19261616; PubMed Central PMCID: PMCPMC2670117. eng.
  • Huang P, Zhuang B, Zhang H, et al. Hepatitis B virus X protein (HBx) is responsible for resistance to targeted therapies in hepatocellular carcinoma: ex vivo culture evidence. Clin Cancer Res. 2015 Oct;21(19):4420–4430. PubMed PMID: 26059188; eng.
  • Chen KF, Yu HC, Liu TH, et al. Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation. J Hepatol. 2010 Jan;52(1):88–95. PubMed PMID: 19913321; eng.
  • Honma Y, Shimizu S, Takehara T, et al. Sorafenib enhances proteasome inhibitor-induced cell death via inactivation of Akt and stress-activated protein kinases. J Gastroenterol. 2014 Mar;49(3):517–526. PubMed PMID: 23543326; eng.
  • Hui B, Shi YH, Ding ZB, et al. Proteasome inhibitor interacts synergistically with autophagy inhibitor to suppress proliferation and induce apoptosis in hepatocellular carcinoma. Cancer. 2012 Nov;118(22):5560–5571. PubMed PMID: 22517429; eng.
  • Wang C, Gao D, Guo K, et al. Novel synergistic antitumor effects of rapamycin with bortezomib on hepatocellular carcinoma cells and orthotopic tumor model. BMC Cancer. 2012 May;12:166. PubMed PMID: 22559167; PubMed Central PMCID: PMCPMC3469344. eng.
  • Lemke J, von Karstedt S, Zinngrebe J, et al. Getting TRAIL back on track for cancer therapy. Cell Death Differ. 2014 Sep;21(9):1350–1364. PubMed PMID: 24948009; PubMed Central PMCID: PMCPMC4131183. eng.
  • Ashkenazi A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 2008 Jun-Aug;19(3–4):325–331. PubMed PMID: 18495520; eng.
  • Seki N, Toh U, Sayers TJ, et al. Bortezomib sensitizes human esophageal squamous cell carcinoma cells to TRAIL-mediated apoptosis via activation of both extrinsic and intrinsic apoptosis pathways. Mol Cancer Ther. 2010 Jun;9(6):1842–1851. PubMed PMID: 20515944; PubMed Central PMCID: PMCPMC2884061. eng.
  • Brooks AD, Jacobsen KM, Li W, et al. Bortezomib sensitizes human renal cell carcinomas to TRAIL apoptosis through increased activation of caspase-8 in the death-inducing signaling complex. Mol Cancer Res. 2010 May;8(5):729–738. PubMed PMID: 20442297; PubMed Central PMCID: PMCPMC2873082. eng.
  • Herr I, Schemmer P, Büchler MW. On the TRAIL to therapeutic intervention in liver disease. Hepatology. 2007 Jul;46(1):266–274. PubMed PMID: 17596886; eng.
  • Chen KF, Yu HC, Liu CY, et al. Bortezomib sensitizes HCC cells to CS-1008, an antihuman death receptor 5 antibody, through the inhibition of CIP2A. Mol Cancer Ther. 2011 May;10(5):892–901. PubMed PMID: 21393428; eng.
  • Ganten TM, Koschny R, Haas TL, et al. Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL. Hepatology. 2005 Sep;42(3):588–597. PubMed PMID: 16037944; eng.
  • Koschny R, Ganten TM, Sykora J, et al. TRAIL/bortezomib cotreatment is potentially hepatotoxic but induces cancer-specific apoptosis within a therapeutic window. Hepatology. 2007 Mar;45(3):649–658. PubMed PMID: 17326159; eng.
  • Siegemund M, Pollak N, Seifert O, et al. Superior antitumoral activity of dimerized targeted single-chain TRAIL fusion proteins under retention of tumor selectivity. Cell Death Dis. 2012 Apr;3:e295. PubMed PMID: 22495350; PubMed Central PMCID: PMCPMC3358007. eng.
  • Wahl K, Siegemund M, Lehner F, et al. Increased apoptosis induction in hepatocellular carcinoma by a novel tumor-targeted TRAIL fusion protein combined with bortezomib. Hepatology. 2013 Feb;57(2):625–636. PubMed PMID: 22991197; eng.
  • Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009 Jan;10(1):32–42. PubMed PMID: 19065135; PubMed Central PMCID: PMCPMC3215088. eng.
  • Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007 Jun;1(1):19–25. PubMed PMID: 19383284; PubMed Central PMCID: PMCPMC5543853. eng.
  • West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014 Jan;124(1):30–39. PubMed PMID: 24382387; PubMed Central PMCID: PMCPMC3871231. eng.
  • Heider U, Rademacher J, Lamottke B, et al. Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in cutaneous T cell lymphoma. Eur J Haematol. 2009 Jun;82(6):440–449. PubMed PMID: 19220424; eng.
  • Yu P, Petrus MN, Ju W, et al. Augmented efficacy with the combination of blockade of the Notch-1 pathway, bortezomib and romidepsin in a murine MT-1 adult T-cell leukemia model. Leukemia. 2015 Mar;29(3):556–566. PubMed PMID: 25118879; PubMed Central PMCID: PMCPMC4329116. eng.
  • Zhang QL, Wang L, Zhang YW, et al. The proteasome inhibitor bortezomib interacts synergistically with the histone deacetylase inhibitor suberoylanilide hydroxamic acid to induce T-leukemia/lymphoma cells apoptosis. Leukemia. 2009 Aug;23(8):1507–1514. PubMed PMID: 19282831; eng.
  • Emanuele S, Lauricella M, Carlisi D, et al. SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis. 2007 Jul;12(7):1327–1338. PubMed PMID: 17351739; eng.
  • Huang H, Liu N, Yang C, et al. HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo. PLoS One. 2012;7(12):e52576. PubMed PMID: 23285100; PubMed Central PMCID: PMCPMC3527572. eng.
  • Spratlin JL, Pitts TM, Kulikowski GN, et al. Synergistic activity of histone deacetylase and proteasome inhibition against pancreatic and hepatocellular cancer cell lines. Anticancer Res. 2011 Apr;31(4):1093–1103. PubMed PMID: 21508352; PubMed Central PMCID: PMCPMC3866806. eng.
  • Liu N, Huang H, Xu L, et al. The combination of proteasome inhibitors bortezomib and gambogic acid triggers synergistic cytotoxicity in vitro but not in vivo. Toxicol Lett. 2014 Jan;224(3):333–340. PubMed PMID: 24291039; eng.
  • Wang M, Halasi M, Kabirov K, et al. Combination treatment with bortezomib and thiostrepton is effective against tumor formation in mouse models of DEN/PB-induced liver carcinogenesis. Cell Cycle. 2012 Sep;11(18):3370–3372. PubMed PMID: 22894930; PubMed Central PMCID: PMCPMC3466545. eng.
  • Scaggiante B, Farra R, Dapas B, et al. Aptamer targeting of the elongation factor 1A impairs hepatocarcinoma cells viability and potentiates bortezomib and idarubicin effects. Int J Pharm. 2016 Jun;506(1–2):268–279. PubMed PMID: 27094354; eng.
  • Huang CY, Wei CC, Chen KC, et al. Bortezomib enhances radiation-induced apoptosis in solid tumors by inhibiting CIP2A. Cancer Lett. 2012 Apr;317(1):9–15. PubMed PMID: 22085493; eng.
  • Farra R, Dapas B, Pozzato G, et al. Serum response factor depletion affects the proliferation of the hepatocellular carcinoma cells HepG2 and JHH6. Biochimie. 2010 May;92(5):455–463. PubMed PMID: 20144681; eng.
  • Yang YM, Lee S, Nam CW, et al. G(alpha)12/13 inhibition enhances the anticancer effect of bortezomib through PSMB5 downregulation. Carcinogenesis. 2010 Jul;31(7):1230–1237. PubMed PMID: 20478922; eng.
  • Boozari B, Mundt B, Woller N, et al. Antitumoural immunity by virus-mediated immunogenic apoptosis inhibits metastatic growth of hepatocellular carcinoma. Gut. 2010 Oct;59(10):1416–1426. PubMed PMID: 20675696; eng.
  • Neukirchen J, Meier A, Rohrbeck A, et al. The proteasome inhibitor bortezomib acts differently in combination with p53 gene transfer or cytotoxic chemotherapy on NSCLC cells. Cancer Gene Ther. 2007 Apr;14(4):431–439. PubMed PMID: 17235352; eng.
  • Dhungel B, Jayachandran A, Layton CJ, et al. Seek and destroy: targeted adeno-associated viruses for gene delivery to hepatocellular carcinoma. Drug Deliv. 2017 Nov;24(1):289–299. PubMed PMID: 28165834; eng.
  • Shrestha R, Prithviraj P, Anaka M, et al. Monitoring immune checkpoint regulators as predictive biomarkers in hepatocellular carcinoma. Front Oncol. 2018;8:269. PubMed PMID: 30057891; PubMed Central PMCID: PMCPMC6053505. eng.
  • Seeger JM, Schmidt P, Brinkmann K, et al. The proteasome inhibitor bortezomib sensitizes melanoma cells toward adoptive CTL attack. Cancer Res. 2010 Mar;70(5):1825–1834. PubMed PMID: 20179203; eng.
  • Shanker A, Pellom ST, Dudimah DF, et al. Bortezomib improves adoptive t-cell therapy by sensitizing cancer cells to FasL cytotoxicity. Cancer Res. 2015 Dec;75(24):5260–5272. PubMed PMID: 26494122; PubMed Central PMCID: PMCPMC4681610. eng.
  • Jiang SS, Tang Y, Zhang YJ, et al. A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma. Oncotarget. 2015 Dec;6(38):41339–41349. PubMed PMID: 26515587; PubMed Central PMCID: PMCPMC4747409. eng.
  • Ciombor KK, Feng Y, Benson AB, et al. Phase II trial of bortezomib plus doxorubicin in hepatocellular carcinoma (E6202): a trial of the Eastern Cooperative Oncology Group. Invest New Drugs. 2014 Oct;32(5):1017–1027. PubMed PMID: 24890858; PubMed Central PMCID: PMCPMC4171216. eng.
  • Pellom ST, Singhal A, Shanker A. Prospects of combining adoptive cell immunotherapy with bortezomib. Immunotherapy. 2017 Mar;9(4):305–308. PubMed PMID: 28303766; eng.
  • Pellom ST, Dudimah DF, Thounaojam MC, et al. Modulatory effects of bortezomib on host immune cell functions. Immunotherapy. 2015;7(9):1011–1022. PubMed PMID: 26325610; PubMed Central PMCID: PMCPMC4648628. eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.