130
Views
0
CrossRef citations to date
0
Altmetric
Review

Current experimental and early investigational agents for cardiac fibrosis: where are we at?

, , , , &
Pages 389-404 | Received 03 Nov 2023, Accepted 28 Feb 2024, Published online: 06 Mar 2024

References

  • Schellings MW, Pinto YM, Heymans S. Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res. 2004;64(1):24–31. doi: 10.1016/j.cardiores.2004.06.006
  • Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210. doi: 10.1002/path.2277
  • Pucci A, Aimo A, Musetti V, et al. Amyloid deposits and fibrosis on left ventricular endomyocardial biopsy correlate with extracellular volume in cardiac amyloidosis. J Am Heart Assoc. 2021;10(20):e020358. doi: 10.1161/JAHA.120.020358
  • Schimmel K, Ichimura K, Reddy S, et al. Cardiac fibrosis in the pressure overloaded left and right ventricle as a therapeutic target. Front Cardiovasc Med. 2022 May 6;9:886553. doi: 10.3389/fcvm.2022.886553
  • de Boer RA, De Keulenaer G, Bauersachs J, et al. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the committee of translational research of the heart failure Association (HFA) of the European society of cardiology. Eur J Heart Fail. 2019;21(3):272–285. doi: 10.1002/ejhf.1406
  • Kai H, Mori T, Tokuda K, et al. Pressure overload-induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis through angiotensin II. Hypertens Res. 2006;29(9):711–718. doi: 10.1291/hypres.29.711
  • Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 2016;365(3):563–581. doi: 10.1007/s00441-016-2431-9
  • Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–574. doi: 10.1007/s00018-013-1349-6
  • Creemers EE, Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res. 2011;89(2):265–272. doi: 10.1093/cvr/cvq308
  • Spoladore R, Falasconi G, Fiore G, et al. Cardiac fibrosis: emerging agents in preclinical and clinical development. Expert Opin Investig Drugs. 2021;30(2):153–166. doi: 10.1080/13543784.2021.1868432
  • Kulasekaran P, Scavone CA, Rogers DS, et al. Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol. 2009;41(4):484–493. doi: 10.1165/rcmb.2008-0447OC
  • Hinderer S, Schenke-Layland K. Cardiac fibrosis - a short review of causes and therapeutic strategies. Adv Drug Deliv Rev. 2019;146:77–82. doi: 10.1016/j.addr.2019.05.011
  • Iles L, Pfluger H, Phrommintikul A, et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol. 2008;52(19):1574–1580. doi: 10.1016/j.jacc.2008.06.049
  • de Boer RA, Daniels LB, Maisel AS, et al. State of the art: newer biomarkers in heart failure. Eur J Heart Fail. 2015;17(6):559–569. doi: 10.1002/ejhf.273
  • López B, González A, Ravassa S, et al. Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J Am Coll Cardiol. 2015;65(22):2449–2456. doi: 10.1016/j.jacc.2015.04.026
  • Oakes RS, Badger TJ, Kholmovski EG, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009;119(13):1758–1767. doi: 10.1161/CIRCULATIONAHA.108.811877
  • O’Hanlon R, Grasso A, Roughton M, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56(11):867–874. doi: 10.1016/j.jacc.2010.05.010
  • Zegard A, Okafor O, de Bono J, et al. Myocardial fibrosis as a predictor of sudden death in patients with coronary artery disease. J Am Coll Cardiol. 2021;77(1):29–41. doi: 10.1016/j.jacc.2020.10.046
  • Schirone L, Forte M, Palmerio S, et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid Med Cell Longev. 2017;2017:3920195. doi: 10.1155/2017/3920195
  • Schnee JM, Hsueh WA. Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc Res. 2000;46(2):264–268. doi: 10.1016/s0008-6363(00)00044-4
  • Varo N, Iraburu MJ, Varela M, et al. Chronic AT(1) blockade stimulates extracellular collagen type I degradation and reverses myocardial fibrosis in spontaneously hypertensive rats. Hypertension. 2000;35(6):1197–1202. doi: 10.1161/01.hyp.35.6.1197
  • Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102(12):1388–1393. doi: 10.1161/01.cir.102.12.1388
  • López B, Querejeta R, Varo N, et al. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation. 2001;104(3):286–291. doi: 10.1161/01.cir.104.3.286
  • Díez J, Querejeta R, López B, et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002;105(21):2512–2517. doi: 10.1161/01.cir.0000017264.66561.3d
  • Soberman JE, Weber KT. Spironolactone in congestive heart failure. Curr Hypertens Rep. 2000;2(5):451–456. doi: 10.1007/s11906-000-0027-x
  • Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H, et al. A randomized study of the beneficial effects of aldosterone antagonism on LV function, structure, and fibrosis markers in metabolic syndrome. JACC Cardiovasc Imaging. 2011;4(12):1239–1249. doi: 10.1016/j.jcmg.2011.08.014
  • Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H, et al. Fibrosis and cardiac function in obesity: a randomised controlled trial of aldosterone blockade. Heart. 2013;99(5):320–326. doi: 10.1136/heartjnl-2012-303329
  • Mak GJ, Ledwidge MT, Watson CJ, et al. Natural history of markers of collagen turnover in patients with early diastolic dysfunction and impact of eplerenone. J Am Coll Cardiol. 2009;54(18):1674–1682. doi: 10.1016/j.jacc.2009.08.021
  • Deswal A, Richardson P, Bozkurt B, et al. Results of the randomized aldosterone antagonism in heart failure with preserved ejection fraction trial (RAAM-PEF). J Card Fail. 2011;17(8):634–642. doi: 10.1016/j.cardfail.2011.04.007
  • Zannad F, Alla F, Dousset B, et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators [published correction appears in circulation 2001 Jan 23;103(3): 476]. Circulation. 2000;102(22):2700–2706. doi: 10.1161/01.cir.102.22.2700
  • Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med. 1999;341(10):709–717. doi: 10.1056/NEJM199909023411001
  • Hofmann F. A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology. Basic Res Cardiol. 2018 Jun 22;113(4):31. doi: 10.1007/s00395-018-0690-1
  • Matei AE, Beyer C, Györfi AH, et al. Protein kinases G are essential downstream mediators of the antifibrotic effects of sGC stimulators. Ann Rheum Dis. 2018;77(3):459. doi: 10.1136/annrheumdis-2017-212489
  • Nakerakanti S, Trojanowska M. The role of TGF-β receptors in fibrosis. Open Rheumatol J. 2012;6(1):156–162. doi: 10.2174/1874312901206010156
  • Burke RM, Lighthouse JK, Mickelsen DM, et al. Sacubitril/Valsartan decreases cardiac fibrosis in left ventricle pressure overload by restoring PKG signaling in cardiac fibroblasts. Circ Heart Fail. 2019;12(4):e005565. doi: 10.1161/CIRCHEARTFAILURE.118.005565
  • Kapoun AM, Liang F, O’Young G, et al. B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res. 2004;94(4):453–461. doi: 10.1161/01.RES.0000117070.86556.9F
  • McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. doi: 10.1056/NEJMoa1409077
  • Schmieder RE, Wagner F, Mayr M, et al. The effect of sacubitril/valsartan compared to olmesartan on cardiovascular remodelling in subjects with essential hypertension: the results of a randomized, double-blind, active-controlled study. Eur Heart J. 2017;38(44):3308–3317. doi: 10.1093/eurheartj/ehx525
  • Zile MR, O’Meara E, Claggett B, et al. Effects of sacubitril/valsartan on biomarkers of extracellular matrix regulation in patients with HFrEF. J Am Coll Cardiol. 2019;73(7):795–806. doi: 10.1016/j.jacc.2018.11.042
  • Solomon SD, McMurray JJV, Anand IS, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(17):1609–1620. doi: 10.1056/NEJMoa1908655
  • Cunningham JW, Claggett BL, O’Meara E, et al. Effect of Sacubitril/Valsartan on Biomarkers of Extracellular Matrix Regulation in Patients With HFpEF. J Am Coll Cardiol. 2020;76(5):503–514. doi: 10.1016/j.jacc.2020.05.072
  • Bodey F, Hopper I, Krum H. Neprilysin inhibitors preserve renal function in heart failure. Int J Cardiol. 2015;179:329–330. doi: 10.1016/j.ijcard.2014.11.059
  • Jordan J, Stinkens R, Jax T, et al. Improved insulin sensitivity with angiotensin receptor neprilysin inhibition in individuals with obesity and hypertension. Clin Pharmacol Ther. 2017;101(2):254–263. doi: 10.1002/cpt.455
  • Mazurek JA, Jessup M. Understanding Heart Failure. Card Electrophysiol Clin. 2015;7(4):557–575. doi: 10.1016/j.ccep.2015.08.001
  • Le DE, Pascotto M, Leong-Poi H, et al. Anti-inflammatory and pro-angiogenic effects of beta blockers in a canine model of chronic ischemic cardiomyopathy: comparison between carvedilol and metoprolol. Basic Res Cardiol. 2013;108(6):384. doi: 10.1007/s00395-013-0384-7
  • Ziegler KA, Ahles A, Wille T, et al. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovasc Res. 2018;114(2):291–299. doi: 10.1093/cvr/cvx227
  • Lin TT, Sung YL, Syu JY, et al. Anti-inflammatory and antiarrhythmic effects of beta blocker in a rat model of rheumatoid arthritis. J Am Heart Assoc. 2020;9(18):e016084. doi: 10.1161/JAHA.120.016084
  • Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–2128. doi: 10.1056/NEJMoa1504720
  • McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. doi: 10.1056/NEJMoa1911303
  • Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383(15):1413–1424. doi: 10.1056/NEJMoa2022190
  • Solomon SD, de Boer RA, DeMets D, et al. Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: rationale and design of the DELIVER trial. Eur J Heart Fail. 2021;23(7):1217–1225. doi: 10.1002/ejhf.2249
  • Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–1461. doi: 10.1056/NEJMoa2107038
  • Lee HC, Shiou YL, Jhuo SJ, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol. 2019 Apr 1;18(1):45. doi: 10.1186/s12933-019-0849-6
  • Li C, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019 Feb 2;18(1):15. doi: 10.1186/s12933-019-0816-2
  • Kang S, Verma S, Hassanabad AF, et al. Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Can J Cardiol. 2020;36(4):543–553. doi: 10.1016/j.cjca.2019.08.033
  • Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic Heart failure by enhancing myocardial energetics. J Am Coll Cardiol. 2019;73(15):1931–1944. doi: 10.1016/j.jacc.2019.01.056
  • Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin Ameliorates Diastolic Dysfunction and Left Ventricular Fibrosis/Stiffness in Nondiabetic Heart Failure: A Multimodality Study. JACC Cardiovasc Imaging. 2021;14(2):393–407. doi: 10.1016/j.jcmg.2020.07.042
  • Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298–310. doi: 10.1016/j.freeradbiomed.2017.01.035
  • Ye Y, Jia X, Bajaj M, et al. Dapagliflozin attenuates Na+/H+ exchanger-1 in Cardiofibroblasts via AMPK activation. Cardiovasc Drugs Ther. 2018;32(6):553–558. doi: 10.1007/s10557-018-6837-3
  • Wang K, Li Z, Sun Y, et al. Dapagliflozin Improves Cardiac Function, Remodeling, Myocardial Apoptosis, and Inflammatory Cytokines in Mice with Myocardial Infarction. J Cardiovasc Transl Res. 2022;15(4):786–796. doi: 10.1007/s12265-021-10192-y
  • Daud E, Ertracht O, Bandel N, et al. The impact of empagliflozin on cardiac physiology and fibrosis early after myocardial infarction in non-diabetic rats. Cardiovasc Diabetol. 2021 Jul 2;20(1):132. doi: 10.1186/s12933-021-01322-6
  • Wang C, Qin Y, Zhang X, et al. Effect of Dapagliflozin on indicators of myocardial fibrosis and levels of inflammatory factors in heart failure patients. Disease Markers. 2022 Sep 5;2022:1–7.
  • McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure [published correction appears in eur heart J. 2021 Oct 14. Eur Heart J. 2021;42(36):3599–3726. doi: 10.1093/eurheartj/ehab368
  • Yamamoto C, Fukuda N, Jumabay M, et al. Protective effects of statin on cardiac fibrosis and apoptosis in adrenomedullin-knockout mice treated with angiotensin II and high salt loading. Hypertens Res. 2011;34(3):348–353. doi: 10.1038/hr.2010.243
  • Wolfrum S, Dendorfer A, Rikitake Y, et al. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase akt and cardiovascular protection. Arterioscler Thromb Vasc Biol. 2004;24(10):1842–1847. doi: 10.1161/01.ATV.0000142813.33538.82
  • Chang SA, Kim YJ, Lee HW, et al. Effect of rosuvastatin on cardiac remodeling, function, and progression to heart failure in hypertensive heart with established left ventricular hypertrophy. Hypertension. 2009;54(3):591–597. doi: 10.1161/HYPERTENSIONAHA.109.131243
  • Yu B, Yu M, Zhang H, et al. Suppression of miR-143-3p contributes to the anti-fibrosis effect of atorvastatin on myocardial tissues via the modulation of Smad2 activity. Exp Mol Pathol. 2020;112:104346. doi: 10.1016/j.yexmp.2019.104346
  • Abulhul E, McDonald K, Martos R, et al. Long-term statin therapy in patients with systolic heart failure and normal cholesterol: effects on elevated serum markers of collagen turnover, inflammation, and B-type natriuretic peptide. Clin Ther. 2012;34(1):91–100. doi: 10.1016/j.clinthera.2011.11.002
  • Chang YY, Wu YW, Lee JK, et al. Effects of 12 weeks of atorvastatin therapy on myocardial fibrosis and circulating fibrosis biomarkers in statin-naïve patients with hypertension with atherosclerosis. J Investig Med. 2016;64(7):1194–1199. doi: 10.1136/jim-2016-000092
  • Ashton E, Windebank E, Skiba M, et al. Why did high-dose rosuvastatin not improve cardiac remodeling in chronic heart failure? Mechanistic insights from the UNIVERSE study. Int J Cardiol. 2011;146(3):404–407. doi: 10.1016/j.ijcard.2009.12.028
  • Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9645):1231–1239. doi: 10.1016/S0140-6736(08)61240-4
  • Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357(22):2248–2261. doi: 10.1056/NEJMoa0706201
  • Kim HB, Hong YJ, Park HJ, et al. Effects of Ivabradine on left ventricular systolic function and cardiac fibrosis in rat myocardial ischemia-reperfusion Model. Chonnam Med J. 2018;54(3):167–172. doi: 10.4068/cmj.2018.54.3.167
  • Ma D, Xu T, Cai G, et al. Effects of ivabradine hydrochloride combined with trimetazidine on myocardial fibrosis in rats with chronic heart failure. Exp Ther Med. 2019;18(3):1639–1644. doi: 10.3892/etm.2019.7730
  • Simko F, Baka T, Poglitsch M, et al. Effect of Ivabradine on a hypertensive heart and the renin-angiotensin-aldosterone system in L-NAME-Induced hypertension. Int J Mol Sci. 2018 Oct 3;19(10):3017. doi: 10.3390/ijms19103017
  • Sjögren B, Parra S, Heath LJ, et al. Cardiotonic steroids stabilize regulator of G protein signaling 2 protein levels. Mol Pharmacol. 2012;82(3):500–509. doi: 10.1124/mol.112.079293
  • Nance MR, Kreutz B, Tesmer VM, et al. Structural and functional analysis of the regulator of G protein signaling 2-gαq complex. Structure. 2013;21(3):438–448. doi: 10.1016/j.str.2012.12.016
  • Sjögren B, Parra S, Atkins KB, et al. Digoxin-mediated upregulation of RGS2 protein protects against cardiac injury. J Pharmacol Exp Ther. 2016;357(2):311–319. doi: 10.1124/jpet.115.231571
  • Armstrong PW, Pieske B, Anstrom KJ, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020;382(20):1883–1893. doi: 10.1056/NEJMoa1915928
  • Geschka S, Kretschmer A, Sharkovska Y, et al. Soluble guanylate cyclase stimulation prevents fibrotic tissue remodeling and improves survival in salt-sensitive Dahl rats. PLoS One. 2011;6(7):e21853. doi: 10.1371/journal.pone.0021853
  • Sandner P. From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators. Biol Chem. 2018;399(7):679–690. doi: 10.1515/hsz-2018-0155
  • Bice JS, Keim Y, Stasch JP, et al. NO-independent stimulation or activation of soluble guanylyl cyclase during early reperfusion limits infarct size. Cardiovasc Res. 2014;101(2):220–228. doi: 10.1093/cvr/cvt257
  • Methner C, Buonincontri G, Hu CH, et al. Riociguat reduces infarct size and post-infarct heart failure in mouse hearts: insights from MRI/PET imaging. PLoS One. 2013 Dec 31;8(12):e83910. doi: 10.1371/journal.pone.0083910
  • Adler Y, Charron P, Imazio M, et al. 2015 ESC guidelines for the diagnosis and management of pericardial diseases: the task force for the diagnosis and management of pericardial diseases of the European society of cardiology (esc)endorsed by: the European Association for cardio-thoracic surgery (EACTS). Eur Heart J. 2015;36(42):2921–2964. doi: 10.1093/eurheartj/ehv318
  • Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice [published correction appears in Eur Heart J. 2022 Nov 7;43(42):4468]. Eur Heart J. 2021;42(34): 3227–3337. doi: 10.1093/eurheartj/ehab484
  • Roubille F, Kritikou E, Busseuil D, et al. Colchicine: an old wine in a new bottle? Antiinflamm Antiallergy Agents Med Chem. 2013;12(1):14–23. doi: 10.2174/1871523011312010004
  • Akodad M, Fauconnier J, Sicard P, et al. Interest of colchicine in the treatment of acute myocardial infarct responsible for heart failure in a mouse model. Int J Cardiol. 2017;240:347–353. doi: 10.1016/j.ijcard.2017.03.126
  • Aimo A, Martinez-Falguera D, Barison A, et al. Colchicine added to standard therapy further reduces fibrosis in pigs with myocardial infarction. J Cardiovasc Med (Hagerstown). 2023;24(11):840–846. doi: 10.2459/JCM.0000000000001554
  • Akodad M, Sicard P, Fauconnier J, et al. Colchicine and myocardial infarction: a review. Arch Cardiovasc Dis. 2020;113(10):652–659. doi: 10.1016/j.acvd.2020.04.007
  • Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497–2505. doi: 10.1056/NEJMoa1912388
  • Mewton N, Roubille F, Bresson D, et al. Effect of Colchicine on Myocardial Injury in Acute Myocardial Infarction. Circulation. 2021;144(11):859–869. doi: 10.1161/CIRCULATIONAHA.121.056177
  • Bouros D. Pirfenidone for idiopathic pulmonary fibrosis. Lancet. 2011;377(9779):1727–1729. doi: 10.1016/S0140-6736(11)60546-1
  • Aimo A, Spitaleri G, Panichella G, et al. A. Pirfenidone as a novel cardiac protective treatment. Heart Fail Rev. 2022;27(2):525–532. doi: 10.1007/s10741-021-10175-w
  • Oku H, Shimizu T, Kawabata T, et al. Antifibrotic action of pirfenidone and prednisolone: different effects on pulmonary cytokines and growth factors in bleomycin-induced murine pulmonary fibrosis. Eur J Pharmacol. 2008;590(1–3):400–408. doi: 10.1016/j.ejphar.2008.06.046
  • Shi Q, Liu X, Bai Y, et al. In vitro effects of pirfenidone on cardiac fibroblasts: proliferation, myofibroblast differentiation, migration and cytokine secretion. PLoS One. 2011;6(11):e28134. doi: 10.1371/journal.pone.0028134
  • Aimo A, Cerbai E, Bartolucci G, et al. Pirfenidone is a cardioprotective drug: mechanisms of action and preclinical evidence. Pharmacol Res. 2020;155:104694. doi: 10.1016/j.phrs.2020.104694
  • Visner GA, Liu F, Bizargity P, et al. Pirfenidone inhibits T-cell activation, proliferation, cytokine and chemokine production, and host alloresponses. Transplantation. 2009;88(3):330–338. doi: 10.1097/TP.0b013e3181ae3392
  • Aimo A, Burchielli S, Barison A, et al. Effects of pirfenidone on scar size and ventricular remodeling after myocardial infarction: a preclinical study. J Cardiovasc Med (Hagerstown). 2023;24(12):880–890. doi: 10.2459/JCM.0000000000001534
  • Wang Y, Wu Y, Chen J, et al. Pirfenidone attenuates cardiac fibrosis in a mouse model of TAC-induced left ventricular remodeling by suppressing NLRP3 inflammasome formation. Cardiol. 2013;126(1):1–11. doi: 10.1159/000351179
  • Yamazaki T, Yamashita N, Izumi Y, et al. The antifibrotic agent pirfenidone inhibits angiotensin II-induced cardiac hypertrophy in mice. Hypertens Res. 2012;35(1):34–40. doi: 10.1038/hr.2011.139
  • AlAnsari H, Southern B, Riaz H, et al. Responses to Pirfenidone Treatment in patients with idiopathic pulmonary fibrosis is not associated with changes in echocardiographic parameters of left ventricular structure and function. J Card Fail. 2019;25(8):S27. doi: 10.1016/j.cardfail.2019.07.074
  • AlAnsari S, Southern BD, Sharma V, et al. Pirfenidone is associated with decreased indexed end diastolic and systolic volumes in patients with HFpEF and a known history of idiopathic pulmonary fibrosis [abstract]. J Card Fail. 2020;26(Suppl):S25. doi: 10.1016/j.cardfail.2020.09.080
  • Lewis GA, Dodd S, Clayton D, et al. Pirfenidone in heart failure with preserved ejection fraction: a randomized phase 2 trial. Nat Med. 2021;27(8):1477–1482. doi: 10.1038/s41591-021-01452-0
  • Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021;117(6):1450–1488. doi: 10.1093/cvr/cvaa324
  • Fang L, Murphy AJ, Dart AM. A clinical perspective of anti-fibrotic therapies for cardiovascular disease. Front Pharmacol. 2017 Apr 6;8:186. doi: 10.3389/fphar.2017.00186
  • Frantz S, Hu K, Adamek A, et al. Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol. 2008;103(5):485–492. doi: 10.1007/s00395-008-0739-7
  • Kuwahara F, Kai H, Tokuda K, et al. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106(1):130–135. doi: 10.1161/01.cir.0000020689.12472.e0
  • Verkerke H, Dias-Baruffi M, Cummings RD, et al. Galectins: An Ancient Family of Carbohydrate Binding Proteins with Modern Functions. Methods Mol Biol. 2022;2442:1–40. doi: 10.1007/978-1-0716-2055-7_1
  • Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–3128. doi: 10.1161/01.CIR.0000147181.65298.4D
  • Liu YH, D’Ambrosio M, Liao TD, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol. 2009;296(2):H404–H412. doi: 10.1152/ajpheart.00747.2008
  • Kanasaki M, Nagai T, Kitada M, et al. Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors. Fibrogenesis Tissue Repair. 2011 Nov 30;4(1):25. doi: 10.1186/1755-1536-4-25
  • Rousseau A, Michaud A, Chauvet MT, et al. The hemoregulatory peptide N-acetyl-ser-asp-lys-pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J Biol Chem. 1995;270(8):3656–3661. doi: 10.1074/jbc.270.8.3656
  • Li P, Xiao HD, Xu J, et al. Angiotensin-converting enzyme N-terminal inactivation alleviates bleomycin-induced lung injury. Am J Pathol. 2010;177(3):1113–1121. doi: 10.2353/ajpath.2010.081127
  • Sun M, Chen M, Dawood F, et al. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation. 2007;115(11):1398–1407. doi: 10.1161/CIRCULATIONAHA.106.643585
  • Mann DL, McMurray JJ, Packer M, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation. 2004;109(13):1594–1602. doi: 10.1161/01.CIR.0000124490.27666.B2
  • Chung ES, Packer M, Lo KH, et al. Anti-TNF therapy against congestive heart failure investigators. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation. 2003;107(25):3133–3140. doi: 10.1161/01.CIR.0000077913.60364.D2
  • Hamid T, Gu Y, Ortines RV, et al. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation. 2009;119(10):1386–1397. doi: 10.1161/CIRCULATIONAHA.108.802918
  • Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet. 1999;353(9169):2001–2007. doi: 10.1016/S0140-6736(99)04440-2
  • Travers JG, Tharp CA, Rubino M, et al. Therapeutic targets for cardiac fibrosis: from old school to next-gen. J Clin Invest. 2022;132(5):e148554. doi: 10.1172/JCI148554
  • Sabbah HN. The cellular and physiologic effects of beta blockers in heart failure. Clin Cardiol. 1999;22 Suppl 5:V16–V20.
  • Liu X, Sun SQ, Hassid A, et al. cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and smad signaling in cardiac fibroblasts. Mol Pharmacol. 2006;70(6):1992–2003. doi: 10.1124/mol.106.028951
  • Yi XP, Gerdes AM, Li F. Myocyte redistribution of GRK2 and GRK5 in hypertensive, heart-failure-prone rats. Hypertension. 2002;39(6):1058–1063. doi: 10.1161/01.hyp.0000019130.09167.3b
  • Woodall MC, Woodall BP, Gao E, et al. Cardiac fibroblast GRK2 deletion enhances contractility and remodeling following Ischemia/Reperfusion injury. Circ Res. 2016;119(10):1116–1127. doi: 10.1161/CIRCRESAHA.116.309538
  • Raake PW, Schlegel P, Ksienzyk J, et al. AAV6.βARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model. Eur Heart J. 2013;34(19):1437–1447. doi: 10.1093/eurheartj/ehr447
  • Nantel F, Bonin H, Emorine LJ, et al. The human beta 3-adrenergic receptor is resistant to short term agonist-promoted desensitization. Mol Pharmacol. 1993;43(4):548–555.
  • Michel LYM, Farah C, Balligand JL. The Beta3 Adrenergic Receptor in Healthy and Pathological Cardiovascular Tissues. Cells. 2020 [Published 2020 Dec 2];9(12):2584. doi: 10.3390/cells9122584
  • Gong W, Yan M, Chen J, et al. Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor β-induced smad signaling. Front Med. 2014;8(4):445–455. doi: 10.1007/s11684-014-0378-3
  • Takimoto E, Champion HC, Li M, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11(2):214–222. doi: 10.1038/nm1175
  • Pérez NG, Piaggio MR, Ennis IL, et al. Phosphodiesterase 5A inhibition induces Na+/H+ exchanger blockade and protection against myocardial infarction. Hypertension. 2007;49(5):1095–1103. doi: 10.1161/HYPERTENSIONAHA.107.087759
  • Pokreisz P, Vandenwijngaert S, Bito V, et al. Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation. 2009;119(3):408–416. doi: 10.1161/CIRCULATIONAHA.108.822072
  • Gong W, Yan M, Chen J, et al. Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor β-induced smad signaling. Front Med. 2014;8(4):445–455. doi: 10.1007/s11684-014-0378-3
  • Salloum FN, Abbate A, Das A, et al. Sildenafil (viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am J Physiol Heart Circ Physiol. 2008;294(3):H1398–H1406. doi: 10.1152/ajpheart.ajpheart.91438.2007
  • Chau VQ, Salloum FN, Hoke NN, et al. Mitigation of the progression of heart failure with sildenafil involves inhibition of RhoA/Rho-kinase pathway. Am J Physiol Heart Circ Physiol. 2011;300(6):H2272–H2279. doi: 10.1152/ajpheart.00654.2010
  • Kim KH, Kim YJ, Ohn JH, et al. Long-term effects of sildenafil in a rat model of chronic mitral regurgitation: benefits of ventricular remodeling and exercise capacity. Circulation. 2012;125(11):1390–1401. doi: 10.1161/CIRCULATIONAHA.111.065300
  • Guazzi M, Vicenzi M, Arena R, et al. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4(1):8–17. doi: 10.1161/CIRCHEARTFAILURE.110.944694
  • Heymans S, Lupu F, Terclavers S, et al. Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol. 2005;166(1):15–25. doi: 10.1016/S0002-9440(10)62228-6
  • Matsusaka H, Ide T, Matsushima S, et al. Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension. 2006;47(4):711–717. doi: 10.1161/01.HYP.0000208840.30778.00
  • Hudson MP, Armstrong PW, Ruzyllo W, et al. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (prevention of myocardial infarction early remodeling) trial. J Am Coll Cardiol. 2006;48(1):15–20. doi: 10.1016/j.jacc.2006.02.055
  • Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021 Apr 6;11(4):69. doi: 10.1038/s41408-021-00459-7
  • Wang Z, Wu Z, Liu Y, et al. New development in CAR-T cell therapy. J Hematol Oncol. 2017 Feb 21;10(1):53. doi: 10.1186/s13045-017-0423-1
  • Liu Y, Chen X, Han W, et al. Tisagenlecleucel, an approved anti-CD19 chimeric antigen receptor T-cell therapy for the treatment of leukemia. Drugs Today (Barc). 2017;53(11):597–608. doi: 10.1358/dot.2017.53.11.2725754
  • Aghajanian H, Kimura T, Rurik JG, et al. Targeting cardiac fibrosis with engineered T cells [published correction appears in nature. 2019 Dec;576(7785): E2]. Nature. 2019;573(7774):430–433. doi: 10.1038/s41586-019-1546-z
  • Sermer D, Brentjens R. CAR T-cell therapy: full speed ahead. Hematol Oncol. 2019;37 Suppl 1(S1):95–100. doi: 10.1002/hon.2591
  • National Cancer Institute. CAR T cells: engineering patients’ immune cells to treat their cancer. Available from: https://www.cancer.gov/about-cancer/treatment/research/car-t-cells.
  • Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73. doi: 10.1126/scitranslmed.3002842
  • Ghosh AK, Chen DH, Guha A, et al. CAR T Cell Therapy-Related Cardiovascular Outcomes and management: systemic disease or direct cardiotoxicity? JACC Cardio Oncol. 2020 Mar 17;2(1):97–109. doi: 10.1016/j.jaccao.2020.02.011
  • Asnani A. Cardiotoxicity of immunotherapy: incidence, diagnosis, and management. Curr Oncol Rep. 2018 Apr 11;20(6):44. doi: 10.1007/s11912-018-0690-1
  • Rurik JG, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury. Science. 2022;375(6576):91–96. doi: 10.1126/science.abm0594

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.