52
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Exocyclic DNA adducts and oxidative stress parameters: useful tools for biomonitoring exposure to aldehydes in smokers

ORCID Icon, , , , &
Pages 154-160 | Received 11 Aug 2023, Accepted 16 Mar 2024, Published online: 02 Apr 2024

References

  • Alamil H, Lechevrel M, Lagadu S, Galanti L, Dagher Z, Delépée R. 2020. A validated UHPLC-MS/MS method for simultaneous quantification of 9 exocyclic DNA adducts induced by 8 aldehydes. J Pharm Biomed Anal. 179:1–10. doi: 10.1016/j.jpba.2019.113007
  • Alamil H, Galanti L, Heutte N, Van Der Schueren M, Dagher Z, Lechevrel M. 2020. Genotoxicity of aldehyde mixtures: profile of exocyclic DNA-adducts as a biomarker of exposure to tobacco smoke. Toxicol Lett. 331(May):57–64. doi: 10.1016/j.toxlet.2020.05.010
  • Altomare A, Baron G, Gianazza E, Banfi C, Carini M, Aldini G. 2021. Lipid peroxidation derived reactive carbonyl species in free and conjugated forms as an index of lipid peroxidation: limits and perspectives. Redox Biol. Elsevier B.V., 42:101899. doi: 10.1016/j.redox.2021.101899
  • Ambrose JA, Barua RS. 2004. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. Elsevier Masson SAS, 43(10):1731–1737. doi: 10.1016/j.jacc.2003.12.047
  • Andries A, Rozenski J, Vermeersch P, Mekahli D, Van Schepdael A. 2021. Recent progress in the LC–MS/MS analysis of oxidative stress biomarkers. Electrophoresis. 42(4):402–428. doi: 10.1002/elps.202000208
  • Aragno M, Mastrocola R. 2017. Dietary sugars and endogenous formation of advanced glycation endproducts: emerging mechanisms of disease. 9(4):385. doi: 10.3390/nu9040385
  • Bartsch H, Nair UJ. 2014. Lipid peroxidation–derived DNA adducts and the role in inflammation-related carcinogenesis. In Cancer and inflammation mechanisms. John Wiley & Sons, Ltd; p. 61–74. doi: 10.1002/9781118826621.ch5
  • Benowitz NL. 2003. Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Prog Cardiovasc Dis. 46(1):91–111. doi: 10.1016/S0033-0620(03)00087-2.
  • Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR. 2017. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med. Elsevier, 107:13–34. doi: 10.1016/j.freeradbiomed.2016.12.049
  • Carlsson H, Törnqvist M. 2017. An adductomic approach to identify electrophiles in vivo. Basic Clin Pharmacol Toxicol. 121 Suppl 3(S3):44–54. doi: 10.1111/bcpt.12715
  • Carnevale R, Sciarretta S, Violi F, Nocella C, Loffredo L, Perri L, Peruzzi M, Marullo AGM, De Falco E, Chimenti I, et al. 2016. Acute impact of tobacco vs electronic cigarette smoking on oxidative stress and vascular function. Chest. Elsevier Inc, 150(3):606–612. doi: 10.1016/j.chest.2016.04.012
  • Carnevale R, Cammisotto V, Pagano F, Nocella C. 2018. ‘Effects of Smoking on Oxidative Stress and Vascular Function’, In Smoking prevention and cessation, pp. 25–47. Available at: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics.
  • Charão MF, Moro AM, Valentini J, Brucker N, Bubols GB, Bulcão RP, Baierle M, Freitas FA, Nascimento SN, Barth A, et al. 2014. Exogenous and endogenous antioxidants attenuate the lipid peroxidation in workers occupationally exposed to paints. Drug Chem Toxicol. 37(1):69–75. doi: 10.3109/01480545.2013.806534
  • Churchwell MI, Beland FA, Doerge DR. 2002. Quantification of multiple DNA adducts formed through oxidative stress using liquid chromatography and electrospray tandem mass spectrometry. Chem Res Toxicol. 15(10):1295–1301. doi: 10.1021/tx0101595
  • Colsoul M, Goderniaux N, Vanpee D, Galanti L. 2020. Development and validation of a quantification method of cotinine in urine using two innovative technologies : supported liquid extraction and QDa detection. J Diagn Tech Biomed Anal. 9(1):1000142. doi: 10.37532/jdtba.2020.9(1).142.
  • Dator RP, Solivio MJ, Villalta PW, Balbo S. 2019. Bioanalytical and mass spectrometric methods for aldehyde profiling in biological fluids. Toxics. 7(2):1–35. doi: 10.3390/TOXICS7020032
  • Deveci SE, Deveci F, Açik Y, Ozan AT. 2004. The measurement of exhaled carbon monoxide in healthy smokers and non-smokers. Respir Med. 98(6):551–556. doi: 10.1016/j.rmed.2003.11.018
  • Fujioka K, Shibamoto T. 2006. Determination of toxic carbonyl compounds in cigarette smoke. Far East Entomol. 16(1):47–54. doi: 10.1002/tox
  • Haleng J, Pincemail J, Defraigne JO, Charlier C, Chapelle JP. 2007. Le stress oxydant. Rev Med Liege. 62(10):628–638. doi: 10.1016/j.immbio.2006.02.001.
  • Hecht SS. 2016. Oral cell DNA adducts as potential biomarkers for lung cancer susceptibility in cigarette smokers. Chem Res Toxicol. 30(1):367–375. doi: 10.1021/acs.chemrestox.6b00372
  • Hikisz P, Jacenik D. 2023. The tobacco smoke component, acrolein, as a major culprit in lung diseases and respiratory cancers: molecular mechanisms of acrolein cytotoxic activity. Cells. 12(6):879. doi: 10.3390/cells12060879
  • Hughes K, Lee BL, Feng X, Lee J, Ong C-N. 2002. Coenzyme Q10 and differences in coronary heart disease risk in Asian Indians and Chinese. Free Radic Biol Med. 32(2):132–138. doi: 10.1016/S0891-5849(01)00783-3.
  • IARC. 1986. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans: tobacco smoking. Lyon: Secretariat of the World Health Organization.
  • IARC Monograph. 2021. Acrolein, crotonaldehyde, and arecoline. IARC Monographs on the Identification of Carcinogenic Hazards to Humans; International Agency for Research on Cancer: Lyon, France, 128.
  • Karademirci M, Kutlu R, Kilinc I. 2018. Relationship between smoking and total antioxidant status, total oxidant status, oxidative stress index, vit C, vit E. Clin Respir J. 12(6):2006–2012. doi: 10.1111/crj.12757
  • Kim S. 2016. Overview of cotinine cutoff values for smoking status classification. Int J Environ Res Public Health. 13(12):1236. doi: 10.3390/ijerph13121236
  • Lee B-J, Lin Y-C, Huang Y-C, Ko Y-W, Hsia S, Lin P-T. 2012. The relationship between coenzyme Q10, oxidative stress, and antioxidant enzymes activities and coronary artery disease. ScientificWorldJournal. 2012:1–8. doi: 10.1100/2012/792756
  • Li X, Liu L, Wang H, Chen J, Zhu B, Chen H, Hou H, Hu Q. 2017. Simultaneous analysis of six aldehyde-DNA adducts in salivary DNA of nonsmokers and smokers using stable isotope dilution liquid chromatography electrospray ionization-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. Elsevier, 1060(December 2016):451–459. doi: 10.1016/j.jchromb.2017.06.031
  • Lonkar P, Dedon PC. 2011. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. Int J Cancer. 128(9):1999–2009. doi: 10.1002/ijc.25815
  • Ma B, Stepanov I, Hecht SS. 2019. Recent studies on DNA adducts resulting from human exposure to tobacco smoke. Toxics. 7(1):16. doi: 10.3390/toxics7010016
  • Medeiros MHG. 2019. DNA damage by endogenous and exogenous aldehydes. J Braz Chem Soc. 30(10):2000–2009. doi: 10.21577/0103-5053.20190056
  • Olubukola Sinbad O, Folorunsho AA, Olabisi OL, Abimbola Ayoola O, Johnson Temitope E. 2019. Vitamins as antioxidants. J Food Sci Nutr Res. 02(03):214–235. doi: 10.26502/jfsnr.2642-11000021
  • Paci E, Pigini D, Bauleo L, Ancona C, Forastiere F, Tranfo G. 2018. Urinary cotinine concentration and self-reported smoking status in 1075 subjects living in Central Italy. Int J Environ Res Public Health. 15(4):804. doi: 10.3390/ijerph15040804
  • Pennings JLA, Cremers JWJM, Becker MJA, Klerx WNM, Talhout R. 2020. Aldehyde and volatile organic compound yields in commercial cigarette mainstream smoke are mutually related and depend on the sugar and humectant content in tobacco. Nicotine Tob Res. 22(10):1748–1756. doi: 10.1093/ntr/ntz203
  • Pincemail J, Bonjean K, Cayeux K, Defraigne J-O. 2002. Physiological action of antioxidant defences. Nutrition Clinique et Metabolisme. 16(4):233–239. doi: 10.1016/S0985-0562(02)00166-8
  • Prasad BS, Vidyullatha P, Venkata RP, Tirumala VG, Varre S, Penagaluru UR, Grover P, Mundluru HP, Penagaluru PR. 2013. Evaluation of oxidative stress and DNA damage in traffic policemen exposed to vehicle exhaust. Biomarkers. 18(5):406–411. doi: 10.3109/1354750X.2013.801517
  • Saieva C, Peluso M, Palli D, Cellai F, Ceroti M, Selvi V, Bendinelli B, Assedi M, Munnia A, Masala G, et al. 2016. Dietary and lifestyle determinants of malondialdehyde DNA adducts in a representative sample of the Florence City population. Mutagenesis. 31(4):475–480. doi: 10.1093/mutage/gew012
  • Salahuddin S, Prabhakaran D, Roy A. 2012. Pathophysiological mechanisms of tobacco-related CVD. Glob Heart. World Heart Federation (Geneva), 7(2):113–120. doi: 10.1016/j.gheart.2012.05.003
  • Sampson MM, Chambers DM, Pazo DY, Moliere F, Blount BC, Watson CH. 2014. Simultaneous analysis of 22 volatile organic compounds in cigarette smoke using gas sampling bags for high-throughput solid-phase microextraction. Anal Chem. 86(14):7088–7095. doi: 10.1021/ac5015518
  • Singh R, Sandhu J, Kaur B, Juren T, Steward WP, Segerbäck D, Farmer PB. 2009. Evaluation of the DNA damaging potential of cannabis cigarette smoke by the determination of acetaldehyde derived N2-ethyl-2′- deoxyguanosine adducts. Chem Res Toxicol. 22(6) :1181–1188. doi: 10.1021/tx900106y
  • Talukder MAH, Johnson WM, Varadharaj S, Lian J, Kearns PN, El-Mahdy MA, Liu X, Zweier JL. 2011. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am J Physiol Heart Circ Physiol. 300(1):H388–H396. doi: 10.1152/ajpheart.00868.2010
  • Tweed JO, Hsia SH, Lutfy K, Friedman TC. 2012. The endocrine effects of nicotine and cigarette smoke. Trends Endocrinol Metab. Elsevier Ltd, 23(7):334–342. doi: 10.1016/j.tem.2012.03.006
  • Voulgaridou G-P, Anestopoulos I, Franco R, Panayiotidis MI, Pappa A. 2011. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis DNA damage induced by endogenous aldehydes : current state of knowledge. Mutat Res. Elsevier B.V. 711(1-2):13–27. doi: 10.1016/j.mrfmmm.2011.03.006
  • Weng M-w, Lee H-W, Park S-H, Hu Y, Wang H-T, Chen L-C, Rom WN, Huang WC, Lepor H, Wu X-R, et al. 2018. Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis. Proc Natl Acad Sci USA. 115(27):E6152–E6161. doi: 10.1073/pnas.1804869115
  • Xie M-Z, Shoulkamy MI, Salem AMH, Oba S, Goda M, Nakano T, Ide H. 2016. Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets. Mutat Res. Elsevier B.V. 786:41–51. doi: 10.1016/j.mrfmmm.2016.02.005
  • Yang J, Balbo S, Villalta PW, Hecht SS. 2019. Analysis of acrolein-derived 1. N2-propanodeoxyguanosine adducts in human lung DNA from smokers and non-smokers. Chem Res Toxicol. 32(2):318–325. doi: 10.1021/acs.chemrestox.8b00326

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.