194
Views
28
CrossRef citations to date
0
Altmetric
Original

Hispidulin: Antioxidant properties and effect on mitochondrial energy metabolism

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , & show all
Pages 1305-1315 | Received 07 Mar 2005, Published online: 07 Jul 2009

References

  • Yuting C, Rongliang Z, Zhong Jian J, Yong J. Flavonoids as superoxide scavengers and antioxidants. Free Rad Biol Med 1990; 9: 19–21
  • Hodnick WF, Milosavljevic EB, Nelson JH, Pardini RS. Relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids. Biochem Pharmacol 1988; 37(13)2607–2611
  • Hodnick WF, Dawn LD, Pardini RS. Inhibition of mitochondrial respiration and cyanide-stimulated generation of reactive oxygen species by selected flavonoids. Biochem Pharmacol 1994; 47(3)537–580
  • Syrov VN, Khushbaktova ZA, Ablazora MKH, Sultanov MB, Hazekamp A, Verpoorte R, Panthong A. Isolation of a bronchodilator flavonoid from the Thai medicinal plant Clerodendrum petasites. Ethnopharmacology 2001; 78(1)45–49
  • Liu L, Xiao X, Zhang L, Zheng R, Li Y, Du M, Zhu Z. Effects of flavones from Saussurea involucrata on DNA synthesis by cancer cells. Lanzhou Daxue Xuebao 1985; 21: 80–83
  • Bourdillat B, Delautier D, Labat C, Benveniste J, Potier P, Brink C. Hispidulin, a natural flavone, inhibits human platelet aggregation by increasing cAMP levels. Eur J Pharmacol 1988; 147: 1–6
  • Soicke H, Leng PE. Characterization of flavonoids from Baccharis trimera and their antihepatotoxic properties. Planta Med 1987; 53(1)37–39
  • Ferrándiz ML, Bustos G, Payá M, Gunasegaran R, Alcaraz MJ. Hispidulin protection against hepatotoxicity induced by bromobenzene in mice. Pharmacol Lett 1994; 55(8)145–150
  • Kupchan SM, Sigel CW, Hemingway RJ, Knox JR, Udayamurthy MS. Cytotoxic flavones from Eupatorium species. Tetrahedron 1969; 25(8)1603–1615
  • Sanz MJ, Ferrandiz ML, Cejudo M, Terencio MC, Gil B, Bustos G, Ubeda A, Gunasegaran R, Alcaraz MJ. Influence of a series of natural flavonoids on free radical generating systems and oxidative stress. Xenobiotica 1994; 24(7)689–699
  • Sang JL, Há YC, In KL, Seung UO, Ick DY. Isolation and identification of flavonoids from ethanol extracts of Artemisia vulgaris and their antioxidant activity. Korean J Food Sci Technol 1999; 31(3)815–822
  • Sang JL, Há YC, In KL, Seung UO, Ick DY. Phenolics with inhibitory activity on mouse brain monoamine oxidase (MAO) from whole parts of Artemisia vulgaris L. Food Sci Biotechnol 2000; 9(3)179–182
  • Miura K, Kikuzaki H, Nakatani N. Antioxidant activity of chemical components from sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method. J Agric Food Chem 2002; 50(7)1845–1851
  • Coleman PC, Potgieter DJJ, van Aswegen CH, Vermeulen NMJ. Flavonoids of Geigeria. Phytochemistry 1984; 23(5)1202–1203
  • Mathiesen L, Malterud KE, Sund RB. Hydrogen bond formation as basis for radical scavenging activity: A structure–activity study of C-methylated dihydrochalcones from Myrica gale and structurally related acetophenones. Free Radic Biol Med 1997; 22(1/2)307–311
  • Mora A, Payá M, Ríos JL, Alcaraz MJ. Structure–activity relationships of polymethoxy-flavones and other flavonoids as inhibitors of non-enzymic lipid peroxidation. Biochem Pharmacol 1990; 40: 793–797
  • Arora A, Nair MG, Strasburg GM. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med 2001; 24(9)1355–1363
  • van Acker SABE, Berg DJ, Tromp MNJL, Griffioen DH, Bennekom WP, Vijgh WJF, Bast A. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med. 1996; 20(3)331–342
  • Pannala AS, Chan TS, O'Brien PJ, Rice-Evans CA. Flavonoid B-ring chemistry and antioxidant activity: Fast reaction kinetics. Biochem Biophys Res Commun 2001; 282(5)1161–1168
  • Puppo A. Effect of flavonoids on hydroxyl radical formation by Fenton-type reactions; influence of the iron chelator. Phytochemistry 1992; 31(1)85–88
  • Monteiro HP, Vile GF, Winterbourn CC. Release of iron from ferritin by semiquinone, anthracycline, bipyridyl, and nitroaromatic radicals. Free Radic Biol Med 1988; 6: 587–591
  • Oliveira BH, Nakashima T, Filho JDS, Frehse FL. HPLC analysis of flavonoids in Eupatorium litoralle. J Braz Chem Soc 2001; 12(2)243–246
  • Voss OD, Campelo AP, Bacila M. The respiration chain and the oxidative phosphorylation of rat brain mitochondria. Biochem Biophys Res Commun 1961; 4(1)48–51
  • Braguini WL, Gomes MAB, Oliveira BH, Carnieri EGS, Rocha MEM, Oliveira MBM. Activity of isosteviol lactone on mitochondrial metabolism. Toxicol Lett 2003; 143: 83–92
  • Estabrook RW. Mitochondrial respiratory control and the polarography measurement of ADP/O ratios. Methods Enzymol 1967; 10: 41–47
  • Chance B, Williams ER. The respiratory enzymes in oxidative phosphorilation: Kinetics of oxygen utilization. J Biol Chem 1955; 217: 383–393
  • Singer TP. Determination of the activity of succinate, NADH, choline and α-glycerophosphate dehydrogenase. Methods Biochem Anal 1974; 22: 123–175
  • Somlo M. Induction des lactico-cytocromo c redutases (D-ET L-) de la levure aerobie par les lactates (D-ET L-). Biochim Biophys Acta 1965; 97: 183–201
  • Mason TL, Poyton RO, Wharto DC, Schatz G. Cytochrome c oxidase from bakers yeast. Isolation and properties. J Biol Chem 1973; 248(4)1346–1354
  • Pullman ME, Penefsky HS, Datta A, Racker E. Partial resolution of the enzymes catalysing oxidative phosphorylation. I. Purification and properties of soluble, dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem 1960; 235(11)3322–3329
  • Sumner JB. Scientific apparatus and laboratory methods. A method for the colorimetric determination of phosphorus. Science 1944; 100: 413–414
  • Mustafa MG, Utsumi K, Packer L. Damped oscillatory control of mitochondrial respiration and volume. Biochem Biophys Res Commun 1966; 24: 381–385
  • Sepalla AJ, Wiktron MKF, Saris NEL. Damping of mitochondrial volume oscillations by propanolol and related compounds. Biological and biochemical oscillators, B Chance, KK Pye, AK Gosh, B HESS. Academic Press, New York 1973
  • Moreno AJM, Madeira VMC. Interference of parathion with mitochondrial bioenergetics. Biochim Biophys Acta 1990; 1015: 361–367
  • Oteiza PI, Kleinman CG, Demasi M, Bechara EJH. 5-Aminolevulinic acid induces iron release from ferritin. Arch Biochem Biophys 1995; 316: 607–611
  • Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181: 1199–1200
  • Lowry OH, Rosebrough NJ, Farr AC, Randall RJ. Protein measurement with the polyphenol reagent. J Biol Chem 1951; 193: 265–275
  • Nicholls DG, Ferguson SJ. Bioenergetics 2. Academic Press, San Diego 1992
  • Nakashima RA, Garlid KD. Quinine inhibitions of Na+e K+ transport provides evidence for two cation/H+ exchange in rat liver mitochondria. J Biol Chem 1982; 287: 9252–9254
  • Funk F, Lenders JP, Crichton RR, Schneider W. Reductive mobilization of ferritin iron. Eur J Biochem 1985; 152: 167–172
  • Rocha MEM, Ferreira AMDC, Bechara EJH. Roles of phosphate and enoyl radical in ferritin iron mobilization by 5-aminolevulinic acid. Free Radic Biol Med 2000; 29(12)1272–1279
  • Toyokuni S. Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 1996; 20: 553–566
  • Monteiro HP, Abdalla DSP, Augusto O, Bechara EJH. Free radical generation during δ-aminolevulinic acid autoxidation: Induction by hemoglobin and connection with porphyrinpathies. Arch Biochem Biophys 1989; 271: 206–216
  • Monteiro HP, Winterbourn CC. 6-hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 1989; 38: 4177–4182
  • Ohkawa M, Kinjo J, Hagiwara Y, Ueyama H, Nakamura K, Ishikawa R, Ono M, Nohara T. Three new anti-oxidative saponarin analogs from young green barley leaves. Chem Pharm Bull 1998; 46(12)
  • Ohkawa M, Kinjo J, Nohara T, Ono M. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scaveging activity of flavonoids obtained from some medicinal plants. Biochim Biophys Acta 2001; 1526(2)159–167
  • Hodnick WF, Bohmont CW, Capps C, Pardini RS. Inhibition of the mitochondrial NADH-oxidase (NADH-coenzyme Q oxido-reductase) enzyme system by flavonoids: A structure–activity study. Biochem Pharmacol 1987; 36(17)2873–2874
  • Creuzet S, Ravanel P, Tissut M, Kaouadji M. Uncoupling properties of three flavonols from plane-tree buds. Phytochemistry 1988; 27(10)3093–3099
  • Terada H. The interaction of highly active uncouplers with mitochondria. Biochim Biophy Acta 1981; 639: 225–242
  • Ravanel P. Uncoupling activity of a series of flavones and flavonols on isolated plant mitochondria. Phytochemistry 1986; 25(5)1015–1020
  • Carpenedo F, Bortignon C, Bruni A, Santi R. Effect of quercetin on membrane-linked activities. Biochem Pharmacol 1969; 18: 1495–1500
  • van Acker SABE, Groot MJ, van der Berg DJ, Tromp MNJL, den Kelder GDO, van der Vijgh WJF, Bast A. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem Res Toxicol 1996; 9: 1305–1312
  • Bandy B, Davison AJ. Interaction between metals, ligands and oxygen in the autooxidation of 6 hydroxy-dopamine: Mechanisms by which metal chelation enhances inhibition by superoxide dismutase. Arch Biochem Biophys 1987; 259(2)305–315
  • Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 2001; 49(6)2774–2779
  • Cadena SMSC, Carnieri EGS, Echevaria A, Oliveira MBM. Effect of MI-D, a new mesoionic compound, on energy-linkes functions of rat liver mitochondria. FEBS Lett 1998; 440: 46–50
  • Senff-Ribeiro A, Echevaria A, Silva EF, Veiga SS, Oliveira MBM. Effect of a new 1,3,4-thiadiazolium mesoionic compound (MI-D) on B16-F10 murine melanoma. Melanoma Res 2003; 13(5)465–472
  • Senff-Ribeiro A, Echevaria A, Silva EF, Veiga SS, Oliveira MBM. Anti melanoma activity of 1,3,5-thiadiazolium mesoionics: A structure–activity relationship study. Anti-cancer Drugs 2004; 15(3)269–275
  • Cortez-Pinto H, Yang SQ, Lin HZ, Costa S, Hwang C-S, Lane D, Bagby G, Diehl AM. Bacterial lipopolysaccharide induces uncoupling protein-2 expression in hepatocytes by a tumor necrosis factor-α-dependent mechanism. Biochem Biophys Res Commun 1998; 251(1)313–319
  • Tsuboyama-Kasaoka N, Takahashi M, Kim H, Ezaki O. Up-regulation of liver uncoupling protein-2 mRNA by either fish oil feeding or fibrate administration in mice. Biochem Biophys Res Commun 1999; 257(3)879–885
  • Uchino S, Yamaguchi Y, Furuhashi T, Wang F-S, Zhang J-L, Okabe K, Kihara S, Yamada S, Mori K, Ogawa M. Steatotic liver allografts up-regulate UCP-2 expression and suffer necrosis in rats. J Surg Res 2004; 120(1)73–82
  • Brand MB, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N. Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004; 37(6)755–767
  • Talbot DA, Lambert AJ, Brand MD. Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3. FEBS Lett 2004; 556: 111–115
  • Williams RJ, Spencer JPE, Rice-Evans C. Flavonoids: Antioxidants or signalling molecules?. Free Radic Biol Med 2004; 36(7)838–849

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.