179
Views
9
CrossRef citations to date
0
Altmetric
Review article

Stem cells and nuclear reprogramming

&
Pages 64-78 | Published online: 10 Jul 2009

References

  • Evans M. J., Kaufman M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154–6
  • Martin G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 1981; 78: 7634–8
  • Thomson J. A., Itskovitz‐Eldor J., Shapiro S. S., Waknitz M. A., et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–7
  • Lerou P. H., Daley G. Q. Therapeutic potential of embryonic stem cells. Blood Rev 2005; 19: 321–31
  • Klug M. G., Soonpaa M. H., Koh G. Y., Field L. J. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 1996; 98: 216–24
  • Min J. Y., Yang Y., Sullivan M. F., Ke Q., et al. Long‐term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J Thorac Cardiovasc Surg 2003; 125: 361–9
  • Kolossov E., Bostani T., Roell W., Breitbach M., et al. Engraftment of engineered ES cell‐derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J Exp Med 2006; 203: 2315–27
  • Dai W., Field L. J., Rubart M., Reuter S., et al. Survival and maturation of human embryonic stem cell‐derived cardiomyocytes in rat hearts. J Mol Cell Cardiol 2007; 43: 504–16
  • Laflamme M. A., Chen K. Y., Naumova A. V., Muskheli V., et al. Cardiomyocytes derived from human embryonic stem cells in pro‐survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007; 25: 1015–24
  • Kofidis T., Lebl D. R., Swijnenburg R. J., Greeve J. M., et al. Allopurinol/uricase and ibuprofen enhance engraftment of cardiomyocyte‐enriched human embryonic stem cells and improve cardiac function following myocardial injury. Eur J Cardiothorac Surg 2006; 29: 50–5
  • van Laake L. W., Passier R., Monshouwer‐Kloots J., Nederhoff M. G., et al. Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nat Protoc 2007; 2: 2551–67
  • Kehat I., Khimovich L., Caspi O., Gepstein A., et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004; 22: 1282–9
  • Xue T., Cho H. C., Akar F. G., Tsang S. Y., et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell‐based pacemakers. Circulation 2005; 111: 11–20
  • Kim J. H., Auerbach J. M., Rodriguez‐Gomez J. A., Velasco I., et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 2002; 418: 50–6
  • Nishimura F., Yoshikawa M., Kanda S., Nonaka M., et al. Potential use of embryonic stem cells for the treatment of mouse parkinsonian models: improved behavior by transplantation of in vitro differentiated dopaminergic neurons from embryonic stem cells. Stem Cells 2003; 21: 171–80
  • McDonald J. W., Liu X. Z., Qu Y., Liu S., et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999; 5: 1410–2
  • Soria B., Roche E., Berna G., Leon‐Quinto T., et al. Insulin‐secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin‐induced diabetic mice. Diabetes 2000; 49: 157–62
  • Young H. E., Black A. C, Jr. Adult stem cells. Anat Rec A Discov Mol Cell Evol Biol 2004; 276((1))75–102
  • Fuchs E., Segre J. A. Stem cells: a new lease on life. Cell 2000; 100: 143–55
  • Alfrey C. P., Fishbane S. Implications of neocytolysis for optimal management of anaemia in chronic kidney disease. Nephron Clin Pract 2007; 106: c149–56
  • Urbanek K., Torella D., Sheikh F., De Angelis A., et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 2005; 102: 8692–7
  • Linke A., Muller P., Nurzynska D., Casarsa C., et al. Stem cells in the dog heart are self‐renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A 2005; 102: 8966–71
  • Beltrami A. P., Barlucchi L., Torella D., Baker M., et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114: 763–76
  • Messina E., De Angelis L., Frati G., Morrone S., et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 2004; 95: 911–21
  • Urbanek K., Rota M., Cascapera S., Bearzi C., et al. Cardiac stem cells possess growth factor‐receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long‐term survival. Circ Res 2005; 97: 663–73
  • Anversa P., Kajstura J., Leri A., Bolli R. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 2006; 113: 1451–63
  • Beltrami A. P., Urbanek K., Kajstura J., Yan S. M., et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001; 344: 1750–7
  • Fallon J., Reid S., Kinyamu R., Opole I., et al. In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci U S A 2000; 97: 14686–91
  • Collins C. A., Olsen I., Zammit P. S., Heslop L., et al. Stem cell function, self‐renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 2005; 122: 289–301
  • Dekel B., Zangi L., Shezen E., Reich‐Zeliger S., et al. Isolation and characterization of nontubular sca‐1+lin‐ multipotent stem/progenitor cells from adult mouse kidney. J Am Soc Nephrol 2006; 17: 3300–14
  • Wagers A. J., Weissman I. L. Plasticity of adult stem cells. Cell 2004; 116: 639–48
  • Blau H. M., Brazelton T. R., Weimann J. M. The evolving concept of a stem cell: entity or function?. Cell 2001; 105: 829–41
  • Kajstura J., Rota M., Whang B., Cascapera S., et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 2005; 96: 127–37
  • Bjornson C. R., Rietze R. L., Reynolds B. A., Magli M. C., et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283: 534–7
  • Jackson K. A., Mi T., Goodell M. A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A 1999; 96: 14482–6
  • Clarke D. L., Johansson C. B., Wilbertz J., Veress B., et al. Generalized potential of adult neural stem cells. Science 2000; 288: 1660–3
  • Cao B., Zheng B., Jankowski R. J., Kimura S., et al. Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol 2003; 5: 640–6
  • Medina R. J., Kataoka K., Takaishi M., Miyazaki M., et al. Isolation of epithelial stem cells from dermis by a three‐dimensional culture system. J Cell Biochem 2006; 98: 174–84
  • Kanatsu‐Shinohara M., Inoue K., Lee J., Yoshimoto M., et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 2004; 119: 1001–12
  • Guan K., Nayernia K., Maier L. S., Wagner S., et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006; 440: 1199–203
  • Orlic D., Kajstura J., Chimenti S., Jakoniuk I., et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701–5
  • Wollert K. C., Drexler H. Clinical applications of stem cells for the heart. Circ Res 2005; 96: 151–63
  • Boomsma R. A., Swaminathan P. D., Geenen D. L. Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size. Int J Cardiol 2007; 122: 17–28
  • Nygren J. M., Jovinge S., Breitbach M., Sawen P., et al. Bone marrow‐derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004; 10: 494–501
  • Noiseux N., Gnecchi M., Lopez‐Ilasaca M., Zhang L., et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 2006; 14: 840–50
  • Iso Y., Spees J. L., Serrano C., Bakondi B., et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long‐term engraftment. Biochem Biophys Res Commun 2007; 354: 700–6
  • Xu M., Uemura R., Dai Y., Wang Y., et al. In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J Mol Cell Cardiol 2007; 42: 441–8
  • Mazhari R., Hare J. M. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med 2007; 4 Suppl 1((S1))S21–S26
  • Saha M., Zbinden R., Redwood S. R., Marber M. S. Stem cells to repair the broken heart: much ado about nothing?. Heart 2006; 92: 1717–9
  • Breitbach M., Bostani T., Roell W., Xia Y., et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 2007; 110: 1362–9
  • Weismann A. Das Keimplasma, eine Theorie der Vererbung. The Germ‐Plasm: A Theory of Heredity, W. N Parker, H Ronnfeld. Walter Scott [originally published in 1893], London
  • Briggs R., King T. J. Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs' Eggs. Proc Natl Acad Sci U S A 1952; 38: 455–63
  • Gurdon J. B., Elsdale T. R., Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 1958; 182: 64–5
  • Gurdon J. B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 1962; 10: 622–40
  • Wilmut I., Schnieke A. E., McWhir J., Kind A. J., et al. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385: 810–3
  • Hochedlinger K., Jaenisch R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 2002; 415: 1035–8
  • Eggan K., Baldwin K., Tackett M., Osborne J., et al. Mice cloned from olfactory sensory neurons. Nature 2004; 428: 44–9
  • Inoue K., Wakao H., Ogonuki N., Miki H., et al. Generation of cloned mice by direct nuclear transfer from natural killer T cells. Curr Biol 2005; 15: 1114–8
  • Sung L. Y., Gao S., Shen H., Yu H., et al. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer. Nat Genet 2006; 38: 1323–8
  • Hochedlinger K., Blelloch R., Brennan C., Yamada Y., et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev 2004; 18: 1875–85
  • Blelloch R. H., Hochedlinger K., Yamada Y., Brennan C., et al. Nuclear cloning of embryonal carcinoma cells. Proc Natl Acad Sci U S A 2004; 101: 13985–90
  • Wu H., Sun Y. E. Epigenetic regulation of stem cell differentiation. Pediatr Res 2006; 59((4 Pt 2))21R–5R
  • Stice S. L., Robl J. M. Nuclear reprogramming in nuclear transplant rabbit embryos. Biol Reprod 1988; 39: 657–64
  • Collas P., Robl J. M. Relationship between nuclear remodeling and development in nuclear transplant rabbit embryos. Biol Reprod 1991; 45: 455–65
  • Munsie M. J., Michalska A. E., O'Brien C. M., Trounson A. O., et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 2000; 10: 989–92
  • Rideout W. M, 3rd., Hochedlinger K., Kyba M., Daley G. Q., et al. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 2002; 109: 17–27
  • Lanza R., Moore M. A., Wakayama T., Perry A. C., et al. Regeneration of the infarcted heart with stem cells derived by nuclear transplantation. Circ Res 2004; 94: 820–7
  • Byrne J. A., Pedersen D. A., Clepper L. L., Nelson M., et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 2007; 450: 497–502
  • Matveeva N. M., Shilov A. G., Kaftanovskaya E. M., Maximovsky L. P., et al. In vitro and in vivo study of pluripotency in intraspecific hybrid cells obtained by fusion of murine embryonic stem cells with splenocytes. Mol Reprod Dev 1998; 50: 128–38
  • Tada M., Takahama Y., Abe K., Nakatsuji N., et al. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 2001; 11: 1553–8
  • Ying Q. L., Nichols J., Evans E. P., Smith A. G. Changing potency by spontaneous fusion. Nature 2002; 416: 545–8
  • Cowan C. A., Atienza J., Melton D. A., Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 2005; 309: 1369–73
  • Ambrosi D. J., Tanasijevic B., Kaur A., Obergfell C., et al. Genome‐wide reprogramming in hybrids of somatic cells and embryonic stem cells. Stem Cells 2007; 25: 1104–13
  • Yu J., Vodyanik M. A., He P., Slukvin I. I., et al. Human embryonic stem cells reprogram myeloid precursors following cell‐cell fusion. Stem Cells 2006; 24: 168–76
  • Matveeva N. M., Pristyazhnyuk I. E., Temirova S. A., Menzorov A. G., et al. Unequal segregation of parental chromosomes in embryonic stem cell hybrids. Mol Reprod Dev 2005; 71: 305–14
  • Matsumura H., Tada M., Otsuji T., Yasuchika K., et al. Targeted chromosome elimination from ES‐somatic hybrid cells. Nat Methods 2007; 4: 23–5
  • Hakelien A. M., Landsverk H. B., Robl J. M., Skalhegg B. S., et al. Reprogramming fibroblasts to express T‐cell functions using cell extracts. Nat Biotechnol 2002; 20: 460–6
  • Taranger C. K., Noer A., Sorensen A. L., Hakelien A. M., et al. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 2005; 16: 5719–35
  • Freberg C. T., Dahl J. A., Timoskainen S., Collas P. Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Mol Biol Cell 2007; 18: 1543–53
  • Gaustad K. G., Boquest A. C., Anderson B. E., Gerdes A. M., et al. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun 2004; 314: 420–7
  • Hakelien A. M., Gaustad K. G., Collas P. Transient alteration of cell fate using a nuclear and cytoplasmic extract of an insulinoma cell line. Biochem Biophys Res Commun 2004; 316: 834–41
  • Hansis C., Barreto G., Maltry N., Niehrs C. (2004) Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1. Curr Biol 2004; 14: 1475–80
  • Eckfeldt C. E., Mendenhall E. M., Verfaillie C. M. The molecular repertoire of the 'almighty' stem cell. Nat Rev Mol Cell Biol 2005; 6: 726–37
  • Boyer L. A., Lee T. I., Cole M. F., Johnstone S. E., et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122: 947–56
  • Loh Y. H., Wu Q., Chew J. L., Vega V. B., et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38: 431–40
  • Gan Q., Yoshida T., McDonald O. G., Owens G. K. Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells 2007; 25: 2–9
  • Bhattacharya B., Miura T., Brandenberger R., Mejido J., et al. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 2004; 103: 2956–64
  • Grinnell K. L., Yang B., Eckert R. L., Bickenbach J. R. De‐differentiation of mouse interfollicular keratinocytes by the embryonic transcription factor Oct‐4. J Invest Dermatol 2007; 127: 372–80
  • Hochedlinger K., Yamada Y., Beard C., Jaenisch R. Ectopic expression of Oct‐4 blocks progenitor‐cell differentiation and causes dysplasia in epithelial tissues. Cell 2005; 121: 465–77
  • Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–76
  • McMahon S. B., Wood M. A., Cole M. D. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c‐Myc. Mol Cell Biol 2000; 20: 556–62
  • Nakatake Y., Fukui N., Iwamatsu Y., Masui S., et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol 2006; 26: 7772–82
  • Maherali R. S., et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007; 1: 55–70
  • Okita K., Ichisaka T., Yamanaka S. Generation of germline‐competent induced pluripotent stem cells. Nature 2007; 448: 313–7
  • Wernig M., Meissner A., Foreman R., Brambrink T., et al. In vitro reprogramming of fibroblasts into a pluripotent ES‐cell‐like state. Nature 2007; 448: 318–24
  • Meissner A., Wernig M., Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 2007; 25: 1177–81
  • Qin D., Li W., Zhang J., Pei D. Direct generation of ES‐like cells from unmodified mouse embryonic fibroblasts by Oct4/Sox2/Myc/Klf4. Cell Res 2007; 17: 959–62
  • Takahashi K., Tanabe K., Ohnuki M., Narita M., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–72
  • Yu J., Vodyanik M. A., Smuga‐Otto K., Antosiewicz‐Bourget J., Frane J. L., Tian S., Nie J., Jonsdottir G. A., Ruotti V., Stewart R., Slukvin I. I., Thomson J. A. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–20
  • Hanna J., Wernig M., Markoulaki S., Sun C. W., Meissner A., Cassady J. P., Beard C., Brambrink T., Wu L. C., Townes T. M., Jaenisch R. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318: 1920–3
  • Marshall E. Clinical research. Gene therapy a suspect in leukemia‐like disease. Science 2002; 298: 34–5
  • Nakagawa M., Koyanagi M., Tanabe K., Takahashi K., Ichisaka T., Aoi T., Okita K., Mochiduki Y., Takizawa N., Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2007; 26: 101–6
  • Peitz M., Pfannkuche K., Rajewsky K., Edenhofer F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci U S A 2002; 99: 4489–94
  • Lawrenz B., Schiller H., Willbold E., Ruediger M., et al. Highly sensitive biosafety model for stem‐cell‐derived grafts. Cytotherapy 2004; 6: 212–22
  • Cao F., Drukker M., Lin S., Sheikh A. Y., et al. Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells 2007; 9: 107–17
  • Jung J., Hackett N. R., Pergolizzi R. G., Pierre‐Destine L., Krause A., Crystal R. G. Ablation of tumor‐derived stem cells transplanted to the central nervous system by genetic modification of embryonic stem cells with a suicide gene. Hum Gene Ther 2007; 18: 1182–92
  • Schuldiner M., Itskovitz‐Eldor J., Benvenisty N. Selective ablation of human embryonic stem cells expressing a "suicide" gene. Stem Cells 2003; 21: 257–65
  • Issa J. P. DNA methylation as a therapeutic target in cancer. Clin Cancer Res 2007; 13: 1634–7
  • Lee M. N., Tseng R. C., Hsu H. S., Chen J. Y., et al. Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non‐small cell lung cancer. Clin Cancer Res 2007; 13: 832–8
  • Cibelli J. B., Campbell K. H., Seidel G. E., West M. D., et al. The health profile of cloned animals. Nat Biotechnol 2002; 20: 13–4
  • Carotta S., Pilat S., Mairhofer A., Schmidt U., et al. Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood 2004; 104: 1873–80
  • Wernig M., Tucker K. L., Gornik V., Schneiders A., et al. Tau EGFP embryonic stem cells: an efficient tool for neuronal lineage selection and transplantation. J Neurosci Res 2002; 69: 918–24
  • Gimond C., Marchetti S., Pages G. Differentiation of mouse embryonic stem cells into endothelial cells: genetic selection and potential use in vivo. Methods Mol Biol 2006; 330: 303–29
  • Bauwens C., Yin T., Dang S., Peerani R., et al. Development of a perfusion fed bioreactor for embryonic stem cell‐derived cardiomyocyte generation: oxygen‐mediated enhancement of cardiomyocyte output. Biotechnol Bioeng 2005; 90: 452–61
  • Zandstra P. W., Bauwens C., Yin T., Liu Q., et al. Scalable production of embryonic stem cell‐derived cardiomyocytes. Tissue Eng 2003; 9((4))767–778

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.