188
Views
40
CrossRef citations to date
0
Altmetric
Review article

Stem cell labeling for magnetic resonance imaging

&
Pages 132-142 | Published online: 10 Jul 2009

References

  • Young I. R. Methods in biomedical magnetic resonance imaging and spectroscopy. John Wiley and Sons, New York 2000
  • Gadian D. G. NMR and its applications to living systems. Oxford University Press, Oxford 1995
  • Ahrens E. T., Narasimhan P. T., Nakada T., Jacobs R. E. Small animal neuroimaging using magnetic resonance microscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 2002; 40: 275–306
  • Nieman B. J., Bishop J., Dazai J., Bock N. A., et al. MR technology for biological studies in mice. NMR in Biomedicine 2007; 20: 291–303
  • Turnbull D. H., Mori S. MRI in mouse developmental biology. NMR in Biomedicine 2007; 20: 265–74
  • Caravan P., Ellison J. J., McMurry T. J., Lauffer R. B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chemical Review 1999; 99: 2293–2352
  • Aime S., Cabella C., Colombatto S., Geninatti Crich S., et al. Insight into the use of paramagnetic Gd(III) complexes in MR‐molecular imaging investigations. Journal of Magnetic Resonance Imaging 2002; 16: 394–406
  • Wang Y. J., Hussain S. M., Krestin G. P. Superparamagnetic iron oxide contrast agents:physicochemical characteristics and applications in MR imaging. European Radiology 2001; 11: 2319–31
  • Bulte J. W. M., Kraitchman D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR in Biomedicine 2004; 17: 484–99
  • Lauffer R. B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chemical Review 1987; 87: 901–27
  • Breslau J., Jarvik J. G., Haynor D. R., Longstreth W. T., et al. MR contrast media in neuroimaging: A critical review of the literature. American Journal of Neuroradiology 1999; 20: 670–5
  • Runge V. M. Safety of approved MR contrast media for intravenous injection. Journal of Magnetic Resonance in Medicine 2000; 12: 205–13
  • Modo M., Hoehn M., Bulte J. W. Cellular MR imaging. Molecular Imaging: Official Journal of the Society for Molecular Imaging 2005; 4: 143–64
  • Hoehn M., Küstermann E., Wiedermann D., Bührle C., . Stem cell migration after stroke observed by in vivo MR imaging. Pharmacology of Cerebral Ischemia, J Krieglstein, S Klumpp, et al. medpharm Scientific Publishers, Stuttgart 2004; 503–512
  • Hoehn M., Himmelreich U. In vivo Molecular MR Imaging ‐ potentials and limits. Annual Reports in NMR Spectroscopy ‐ Handbook of Modern Magnetic Resonance, Section: Medical Science, G. A Webb. Academic Publishers, London 2006
  • Heyn C., Ronald J. A., Ramadan S. S., Snir J. A., et al. In vivo MRI of cancer cell fate at the single‐cell level in a mouse model of breast cancer metastasis to the brain. Magnetic Resonance in Medicine 2006; 56: 1001–10
  • Heyn C., Bowen C. V., Rutt B. K., Foster P. J. Detection threshold of single SPIO‐labeled cells with FIESTA. Magnetic Resonance in Medicine 2005; 53: 312–20
  • Bulte J. W. M., Hoekstra Y., Kamman R. L., Magin R. L., et al. Specific MR imaging of human lymphocytes by monoclonal antibody‐guided dextran‐magnetite particles. Magnetic Resonance in Medicine 1992; 25: 148–57
  • Rausch M., Baumann D., Neubacher U., Rudin M. In vivo visualization of phagocytic cells in rat brains after transient ischemia by USPIO. NMR in Biomedicine 2002; 15: 278–83
  • Kraitchman D. L., Heldman A. W., Atalar E., Amado L. C., et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 2003; 107: 2290–3
  • Jendelova P., Herynek V., DeCroos J., Glogarova K., et al. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magnetic Resonance in Medicine 2003; 50: 767–76
  • Bulte J. W. M., Douglas T., Witwer B., Zhang S. C., et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nature Biotechnology 2001; 19: 1141–7
  • Arbab A. S., Yocum G. T., Kalsih H., Jordan E. K., et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 2004; 104: 1217–23
  • Küstermann E., Himmelreich U., Kandal K., Wiedermann D., et al. Efficient stem cell labeling for longitudinal MRI studies. Contrast Media and Molecular Imaging 2008, In press 2008
  • Berger C., Rausch M., Schmidt P., Rudin M. Feasibility and limits of magnetically labeling primary cultured rat T cells with ferumoxides coupled with commonly used transfection agents. Molecular Imaging 2006; 5: 93–104
  • Hoehn M., Küstermann E., Blunk J., Wiedermann D., et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proceedings of the National Academy of Science USA 2002; 99: 16267–72
  • Dodd S. J., Williams M., Suhan J. P., Williams D. S., et al. Detection of single mammalian cells by high‐resolution magnetic resonance imaging. Biophysical Journal 1999; 76: 103–9
  • Kalish H., Arbab A. S., Miller B. R., Lewin B. K., et al. Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: relationship between relaxivities, electrostatic forces, and chemical composition. Magnetic Resonance in Medicine 2003; 50: 275–82
  • Saleh A. DW., Schroeter M., Jonkmanns C., Jander S., et al. Central nervous system inflammatory response after cerebral infarction as detected by magnetic resonance imaging. NMR in Biomedicine 2004; 17: 163–9
  • Saleh A., Wiedermann D., Schroeter M., Jonkmanns C., et al. Central nervous system inflammatory response after cerebral infarction as detected by magnetic resonance imaging. NMR in Biomedicine 2004; 17: 163–9
  • Ahrens E. T., Feili‐Hariri M., Xu H., Genove G., et al. Receptor‐mediated endocytosis of iron‐oxide particles provides efficiient labeling of dendritic cells for in vivo MR imaging. Magnetic Resonance in Medicine 2003; 49: 1006–13
  • de Vries I. J. M., Lesterhuis W. J., Barentsz J. O., Verdijk P., et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nature Biotechnology 2005; 23: 1407–13
  • Ahrens E. T., Flores R., Xu H., Morel P. A. In vivo imaging platform for tracking immunotherapeutic cells. Nature Biotechnology 2005; 23: 983–7
  • Frank J. A., Miller B. R., Arbab A. S., Zywicke H. A., et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfecting agents. Radiology 2003; 228: 480–7
  • Suzuki Y., Zhang S., Kundu P., Yeung A. C., et al. In vitro comparison of the biological effects of three transfection methods for magnetically labeling mouse embryonic stem cells with ferumoxides. Magnetic Resonance in Medicine 2007; 57: 1173–9
  • Geninatti Crich S., Lanzardo S., Barge A., Esposito G., et al. Visualization through Magnetic Resonance Imaging of DNA internalizaed following in vivo electroporation. Molecular Imaging 2005; 4: 7–17
  • Walczak P., Kedziorek G., Lin S., Bulte J. W. M. Instant MR labeling of stem cells using magnetoelectroporation. Magnetic Resonance in Medicine 2005; 54: 769–74
  • Terreno E., Geninatti Crich S., Belfiore S., Biancone L., et al. Effect of the intracellular localization of a Gd‐based imaging probe on the relaxation enhancement of water protons. Magnetic Resonance in Medicine 2006; 55: 491–7
  • Geelen T., Himmelreich U., Justicia C., Strecker C., et al. Comparison of labeling strategies for stem cells with Gd‐chelates. Proc Intl Soc Magn Reson Med 2006; 14: 1883
  • Arbab A. S., Bashaw L. A., Miller B. R., Jordan E. K., et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 2003; 229: 838–46
  • Arbab A. S., Yocum G. T., Wilson L. B., Parwana A., et al. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Molecular Imaging 2004; 3: 24–32
  • Arbab A. S., Yocum G. T., Rad A. M., Khakoo A. Y., et al. Labeling of cells with ferumoxides–protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR in Biomedicine 2005; 18: 553–9
  • Kostura L., Kraitchman D. L., Mackay A. M., Pittenger M. F., et al. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR in Biomedicine 2004; 17: 513–7
  • Stroh A., Zimmer C., Gutzeit C., Jakstadt M., et al. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radical Biology and Medicine 2004; 36: 976–84
  • Bulte J. W., Kraitchman D. L., Mackay A. M., Pittenger M. F. Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood 2004; 104: 3410–2
  • Schroeter M., Saleh A., Wiedermann D., Hoehn M., et al. Histochemical detection of ultrasmall superparamagnetic iron oxide (USPIO) contrast medium uptake in experimental brain ischemia. Magnetic Resonance in Medicine 2004; 52: 403–6
  • Soenen S. J. H., Baert J., DeCuyper M. Optimal conditions for labelling of 3T3 fibroblasts with magnetoliposomes without affecting cellular viability. ChemBioChem 2008, In press
  • Geninatti Crich S., Biancone L., Cantaluppi V., Duo D., et al. Improved route for visualization of stem cells labeled with a Gd‐/Eu‐chelate as a dual (MRI and fluorescence) agent. Magnetic Resonance in Medicine 2004; 51: 938–44
  • Allen M. J., Meade T. J. Synthesis and visualization of a membrane‐permeable MRI contrast agent. Journal of biological inorganic chemistry 2003; 8: 746–50
  • Bhorade R., Weissleder R., Nakakoshi T., Moore A., et al. Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV‐tat derived mambrane translocation peptide. Bioconjugate Chemistry 2000; 11: 301–5
  • Mulder W. J. M., Strijkers G. J., van Tilborg G. A. F., Griffioen A. W., et al. Lipid‐based nanoparticles for contrast‐enhanced MRI and molecular imaging. NMR in Biomedicine 2006; 19: 142–64
  • Bulte J. W. M., Zhang S. C., van Gelderen P., Heryneki V., et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination. Proceedings of the National Academy of Science 1999; 96: 15256–61
  • Bulte J. W., Ben‐Hur T., Miller B. R., Mizrachi‐Kol R., et al. MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain. Magnetic Resonance in Medicine 2003; 50: 201–5
  • Modo M., Cash D., Mellodew K., Williams S. C. R., et al. Tracking transplanted stem cell migration using bifunctional, contrast agent‐enhanced, magnetic resonance imaging. Neuroimage 2002; 17: 803–11
  • Modo M K. M., Cash D., Fraser S. E., Meade T. J., et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 2004; 21: 311–7
  • Zhang Z. G., Jiang Q., Zhang R., Zhang L., et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat. Annals of Neurology 2003; 53: 259–63
  • Küstermann E., Roell W., Breitbach M., Wecker S., et al. Stem cell implantation in ischemic mouse heart: a high‐resolution magnetic resonance imaging investigation. NMR in Biomedicine 2005; 18: 362–70
  • Walter G. A., Cahill K. S., Huard J., Feng H., et al. Noninvasive monitoring of stem cell transfer for muscle disorders. Magnetic Resonance in Medicine 2004; 51: 273–7
  • Baumjohann D., Hess A., Budinsky L., Brune K., et al. In vivo magnetic resonance imaging of dendritic cell migration into the draining lymph nodes of mice. European Journal of Immunology 2006; 36: 2544–55
  • Jendelova P., Herynek V., Urdzikova L., Glogarova K., et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. Journal of Neuroscience Research 2004; 76: 232–43
  • Jacobs R. E., Fraser S. E. Magnetic resonance microscopy of embryonic cell lineages and movements. Science 1994; 263: 681–4
  • Jacobs R. E., Ahrens E. T., Meade T. J., Fraser S. E. Looking deeper into vertebrate development. Trends in Cell Biology 1999; 9: 73–6
  • Shapiro E. M., Skrtic S., Sharer K., Hill J. M., et al. MRI detection of single particles for cellular imaging. Proceedings of the National Academy of Science 2004; 101: 10901–6
  • Zhang ZG Q. J., Zhang R., Zhang L., Wang L., et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat. Annals of Neurology 2003; 53: 259–63
  • Shapiro E. M., Gonzalez‐Perez O., Garcia‐Verdugo J. M., Alvarez‐Buylla A., et al. Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage 2006; 32: 1150–7
  • Vreys R., Peleman C., Geraerts M., DeCuyper M., et al. Validation of magnetoliposomes as MR contrast agents for in situ labeling of endogenous neuronal progenitor cells in the mouse brain. Proceedings of the International Society for Magnetic Resonance in Medicine 2006; 14: 356
  • Rausch M., Sauter A., Froehlich J., Neubacher U., et al. Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magnetic Resonance in Medicine 2001; 46: 1018–22
  • Kleinschnitz C., Bendszus M., Frank M., Solymosi L., et al. In vivo monitoring of macrophage infiltration in experimental ischemic brain lesions by magnetic resonance imaging. Journal of Cerebral Blood Flow & Metabolism 2003; 23: 1356–61
  • Weber R., Wegener S., Ramos‐Cabrer P., Wiedermann D., et al. MRI detection of macrophage activity after experimental stroke in rats: New indicators for late appearance of vascular degradation?. Magnetic Resonance in Medicine 2005; 54: 59–66
  • Winter P. M., Morawski A. M., Caruthers S. D., Fuhrhop R. W., et al. Molecular imaging of angiogenesis in early‐stage atherosclerosis with alpha(v)beta(3)‐Integrin‐targeted nanoparticles. Circulation 2003; 108: 2270–4
  • Lewin M., Carlesso N., Tung C. H., Tang X. W., et al. Tat peptide‐derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology 2000; 18: 410–4
  • Morawski A. M., Winter P. M., Crowder K. C., Caruthers S. D., et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magnetic Resonance in Medicine 2004; 51: 480–6
  • Morawski A. M., Lanza G. M., Wickline S. A. Targeted contrast agents for magnetic resonance imaging and ultrasound. Current Opinion in Biotechnology 2005; 16: 89–92
  • Sibson N., Blamire A. M., Bernardes‐Silva M., Colet J‐M., et al. MRI detection of early endothelial activation in CNS inflammation. Magnetic Resonance in Medicine 2004; 51: 248–52
  • Boutry S., Burtea C., Laurent S., Toubeau G., et al. Magnetic resonance imaging of inflammation with a specific selectin‐targeted contrast agent. Magnetic Resonance in Medicine 2005; 53: 800–7
  • Hood J. D., Bednarski M., Frausto R., Guccione S., et al. Tumor regression by targeted gene delivery to the neovasculature. Science 2002; 296: 2404–7
  • Justicia C., Himmelreich U., Ramos‐Cabrer P., Sprenger C., et al. In vivo tracking of endogenous stem cells by MRI after intraparenchymal injection of iron oxide nanoparticles. Molecular Imaging 2005; 4: 351–2
  • Weissleder R., Moore A., Mahmood U., Bhorade R., et al. In vivo magnetic resonance imaging of transgene expression. Nature Medicine 2000; 6: 351–5
  • Westmeyer G. G., Jasanoff A. Genetically controlled MRI contrast mechanisms and their prospects in systems neuroscience research. Magnetic Resonance Imaging 2007; 25: 1004–10
  • Meade T. J., Taylor A. K., Bull S. R. New magnetic resonance contrast agents as biochemical reporters. Current Opinion in Neurobiology 2003; 13: 597–602
  • Ward K. M., Aletras A. H., Balaban R. S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). Journal of Magnetic Resonance 2000; 143: 79–87
  • Lowe M. P., Parker D., Reany O., Aime S., et al. pH‐dependent modulation of relaxivity and luminescence in macrocyclic gadolinium and europium complexes based on reversible intramolecular sulfonamide ligation. Journal of the American Chemical Society 2001; 123: 7601–9
  • Aime S., Castelli D. D., Terreno E. Novel pH‐reporter MRI contrast agents. Angewandte Chemie International Edition 2002; 41: 4334–6
  • Ward K. M., Balaban R. S. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magnetic Resonance in Medicine 2000; 44: 799–802
  • Aime S., Botta M., Gianolio E., Terreno E. A p(O2)‐responsive MRI contrast agent based on the redox switch of manganese(II/III)‐porphyrin complexes. Angewandte Chemie International Edition 2000; 39: 747–50
  • Burai L., Scopelliti R., Toth E. EuII‐cryptate with optimal water exchange and electronic relaxation: a synthon for potential pO2 responsive macromolecular MRI contrast agents. Chemical Communications 2002; 20: 2366–7
  • Aime S., Botta M., Mainero V., Terreno E. Separation of intra‐ and extracellular lactate NMR signals using a lanthanide shift reagent. Magnetic Resonance in Medicine 2002; 47: 10–3
  • Li W. H., Parigi G., Fragai M., Luchinat C., et al. Mechanistic studies of a calcium‐dependent MRI contrast agent. Inorganic Chemistry 2002; 41: 4018–24
  • Li W. H., Fraser S. E., Meade T. J. A calcium‐sensitive magnetic resonance imaging contrast agent. Journal of the American Chemical Society 1999; 121: 1413–4
  • Moats R. A., Fraser S. E., Meade T. J. A “smart” magnetic resonance imaging agent that reports on specific enzymatic activity. Angewandte Chemie International Edition 1997; 36: 726–8
  • Louie A. Y., Hüber M. M., Ahrens E. T., Rothbächer U., et al. In vivo visualization of gene expresssion using magnetic resonance imaging. Nature Biotechnology 2000; 18: 321–5
  • Mazooz G., Greenberg C. S., Dewhirst M. W., Neeman M. Development of MRI contrast material for in vivo mapping of transglutaminase activity. Proceedings of the Annual Scientific Meeting of the International Society for Magnetic Resonance in Medicine 2004; 1716
  • Himmelreich U., Aime S., Hieronymus T., Justicia C., et al. A responsive MRI contrast agent to monitor functional cell status. Neuroimage 2006; 32: 1142–9
  • Koretsky A. P., Lin Y‐J., Schorle H., Jaenisch R. Genetic control of MRI contrast by expression of the transferrin receptor. Proceedings of the Annual Scientific Meeting of the International Society for Magnetic Resonance in Medicine 1996; 69
  • Cohen B., Dafni H., Meir G., Neeman M. Ferritin as novel MR‐reporter for molecular imaging of gene expression. Proceedings of the International Society for Magnetic Resonance in Medicine 2004; 1707
  • Deans A. E., Wadghiri Y. Z., Bernas L. M., Yu X., et al. Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magnetic Resonance in Medicine 2006; 56: 51–9
  • Genove G., DeMarco U., Xu H., Goins W. F., et al. A new transgene reporter for in vivo magnetic resonance imaging. Nature Medicine 2005; 11: 450–4
  • Aguayo J. B., Blackband S. J., Schoeniger J., Mattingly M. A., et al. Nuclear magnetic resonance imaging of a single cell. Nature 1986; 322: 190–1
  • Himmelreich U., Weber R., Ramos‐Cabrer P., Wegener S., et al. Improved stem cell MR detectability in animal models by modification of the inhalation gas. Molecular Imaging 2005; 4: 104–9
  • Seppenwoolde J. H., Viergever M. A., Bakker C. J. G. Passive tracking exploiting local signal conservation: The white marker phenomenon. Magnetic Resonance in Medicine 2003; 50: 784–90
  • Stuber M., Gilson W. D., Schar M., Kedziorek D. A., et al. Positive contrast visualization of iron oxide‐labeled stem cells using inversion‐recovery with on‐resonant water suppression (IRON). Magnetic Resonance in Medicine 2007; 58: 1072–7
  • Yablonskiy D. A., Haacke E. M. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magnetic Resonance in Medicine 1994; 32: 749–63
  • Siglienti I., Bendszus M., Kleinschnitz C., Stoll G. Cytokine profile of iron‐laden macrophages: Implications for cellular magnetic resonance imaging. Journal of Neuroimmunology 2006; 173: 166–73
  • Grobner T. Gadolinium ‐ a specific trigger for the development of nephrogenic fibrosing dermatopathy?. Nephrol Dial Transplant 2006; 21: 1104–8
  • Ersoy H., Rybicki F. J. Biochemical safety profiles of Gadolinium‐based extracellular contrast agents and nephrogenic systemic fibrosis. Journal of Magnetic Resonance Imaging 2007; 26: 1190–7
  • Mowat P., Franconi F., Chapon C., Lemaire L., et al. Evaluating SPIO‐labelled cell MR efficiency by three‐dimensional quantitative T2* MRI. NMR in Biomedicine 2007; 20: 21–27

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.