169
Views
30
CrossRef citations to date
0
Altmetric
Review article

Stem cell‐based therapy in gastroenterology and hepatology

, , &
Pages 100-118 | Published online: 10 Jul 2009

References

  • Piscaglia A. C., Di Campli C., Pola P., Gasbarrini A. When biology bursts into the clinic: stem cells and their potential. Eur Rev Med Pharmacol Sci 2001; 5: 151–4
  • Mimeault M., Hauke R., Batra S. K. Stem cells: a revolution in therapeutics‐recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 2007; 82: 252–64
  • Everts S. Rolling Out Stem Cells. Chemical & Engineering News 2007; 85
  • Piscaglia A. C., Di Campli C., Gasbarrini G., Gasbarrini A. Stem cells: new tools in gastroenterology and hepatology. Dig Liver Dis 2003; 35: 507–14
  • Punzel M., Ho A. D. Divisional history and pluripotency of human hematopoietic stem cells. Ann N Y Acad Sci 2001; 938: 72–81, discussion 81–2
  • Bach S. P., Renehan A. G., Potten C. S. Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 2000; 21: 469–76
  • Lajtha L. G. Stem cell concepts. Differentiation 1979; 14: 23–34
  • Potten C. S., Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 1990; 110: 1001–20
  • Piscaglia A. C., Shupe T., Gasbarrini A., Petersen B. E. Microarray RNA/DNA in different stem cell lines. Curr Pharm Biotechnol 2007; 8: 167–75
  • Piscaglia A. C., Shupe T. D., Petersen B. E., Gasbarrini A. Stem cells, cancer, liver, and liver cancer stem cells: finding a way out of the labyrinth.. Curr Cancer Drug Targets 2007; 7: 582–90
  • Tarnowski M., Sieron A. L. Adult stem cells and their ability to differentiate. Med Sci Monit 2006; 12: RA154–63
  • Ding S., Schultz P. G. A role for chemistry in stem cell biology. Nat Biotechnol 2004; 22: 833–40
  • Wu D. C., Boyd A. S., Wood K. J. Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Front Biosci 2007; 12: 4525–35
  • Sell S. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology 2001; 33: 738–50
  • Weissman I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000; 100: 157–68
  • Körbling M., Katz R. L., Khanna A., Ruifrok A. C., et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral‐blood stem cells. N Engl J Med 2002; 346: 738–46
  • Li L., Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol 2005; 21: 605–31
  • Alison M. R., Poulsom R., Forbes S., Wright N. A. An introduction to stem cells. J Pathol 2002; 197: 419–23
  • Moore K. A., Lemischka I. R. Stem cells and their niches. Science 2006; 311: 1880–5
  • Guo Y., Lübbert M., Engelhardt M. CD34‐ hematopoietic stem cells: current concepts and controversies. Stem Cells 2003; 21: 15–20
  • Bonnet D. Haematopoietic stem cells. J Pathol 2002; 197: 430–40
  • Reyes M., Lund T., Lenvik T., Aguiar D., et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001; 98: 2615–25
  • Jiang Y., Jahagirdar B. N., Reinhardt R. L., Schwartz R. E., et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–9
  • Petersen B. E., Bowen W. C., Patrene K. D., Mars W. M., et al. Bone marrow as a potential source of hepatic oval cells. Science 1999; 284: 1168–70
  • Schwartz R. E., Reyes M., Koodie L., Jiang Y., et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte‐like cells. J Clin Invest 2002; 109: 1291–302
  • Palis J., Yoder M. C. Yolk‐sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol 2001; 29: 927–36
  • Körbling M., Anderlini P. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter?. Blood 2001; 98: 2900–8
  • Michejda M. Which stem cells should be used for transplantation?. Fetal Diagn Ther 2004; 19: 2–8
  • Georgantas R. W 3rd., Tanadve V., Malehorn M., Heimfeld S., et al. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res 2004; 64: 4434–41
  • Terstappen L. W., Huang S., Safford M., Lansdorp P. M., et al. Sequential generations of hematopoietic colonies derived from single nonlineage‐committed CD34+CD38‐ progenitor cells. Blood 1991; 77: 1218–27
  • Nakamura Y., Ando K., Chargui J., Kawada H., et al. Ex vivo generation of CD34(+) cells from CD34(‐) hematopoietic cells. Blood 1999; 94: 4053–9
  • Bryder D., Rossi D. J., Weissman I. L. Hematopoietic stem cells: the paradigmatic tissue‐specific stem cell. Am J Pathol 2006; 169: 338–46
  • Wagner W., Ansorge A., Wirkner U., Eckstein V., et al. Molecular evidence for stem cell function of the slow‐dividing fraction among human hematopoietic progenitor cells by genome‐wide analysis. Blood 2004; 104: 675–86
  • He X., Gonzalez V., Tsang A., Thompson J., et al. Differential gene expression profiling of CD34+ CD133+ umbilical cord blood hematopoietic stem progenitor cells. Stem Cells Dev 2005; 14: 188–98
  • Hüttmann A., Dührsen U., Heydarian K., Klein‐Hitpass L., et al. Gene expression profiles in murine hematopoietic stem cells revisited: analysis of cDNA libraries reveals high levels of translational and metabolic activities. Stem Cells 2006; 24: 1719–27
  • Magli M. C., Levantini E., Giorgetti A. Developmental potential of somatic stem cells in mammalian adults. J Hematother Stem Cell Res 2000; 9: 961–9
  • Orlic D., Kajstura J., Chimenti S., Jakoniuk I., et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701–5
  • Poulsom R., Forbes S. J., Hodivala‐Dilke K., Ryan E., et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 2001; 195: 229–35
  • Ratajczak M. Z., Kucia M., Reca R., Majka M., et al. Stem cell plasticity revisited: CXCR4‐positive cells expressing mRNA for early muscle, liver and neural cells 'hide out' in the bone marrow. Leukemia 2004; 18: 29–40
  • Tocci A., Forte L. Mesenchymal stem cell: use and perspectives. Hematol J 2003; 4: 92–6
  • Alvarez‐Dolado M., Pardal R., Garcia‐Verdugo J. M., Fike J. R., et al. Fusion of bone‐marrow‐derived cells with Purkinjie neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968–73
  • Wang X., Willenbring H., Akkari Y., Torimaru Y., et al. Cell fusion is the principal source of bone‐marrow‐derived hepatocytes. Nature 2003; 422: 897–901
  • Vassilopoulos G., Wang P. R., Russell D. W. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003; 422: 901–4
  • Jang Y. Y., Collector M. I., Baylin S. B., Diehl A. M., et al. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 2004; 6: 532–9
  • Harris R. G., Herzog E. L., Bruscia E. M., Grove J. E., et al. Lack of a fusion requirement for development of bone marrow‐derived epithelia. Science 2004; 305: 90–3
  • Saji Y., Tamura S., Yoshida Y., Kiso S., et al. Basic fibroblast growth factor promotes the trans‐differentiation of mouse bone marrow cells into hepatic lineage cells via multiple liver‐enriched transcription factors. J Hepatol 2004; 41: 545–50
  • Oh S. H., Witek R. P., Bae S. H., Zheng D., et al. Bone marrow‐derived hepatic oval cells differentiate into hepatocytes in 2‐acetylaminofluorene/partial hepatectomy‐induced liver regeneration. Gastroenterology 2007; 132: 1077–87
  • Quesenberry P. J., Dooner G., Dooner M., Abedi M. Developmental biology: Ignoratio elenchi: red herrings in stem cell research. Science 2005; 308: 1121–2
  • Tanabe Y., Tajima F., Nakamura Y., Shibasaki E., et al. Analyses to clarify rich fractions in hepatic progenitor cells from human umbilical cord blood and cell fusion. Biochem Biophys Res Commun 2004; 324: 711–8
  • Holden C. Stem cell research. Cells find destiny though merger. Science 2003; 300: 35
  • Masson S., Harrison D. J., Plevris J. N., Newsome P. N. Potential of hematopoietic stem cell therapy in hepatology: a critical review. Stem Cells 2004; 22: 897–907
  • Clatworthy J. P., Subramanian V. Stem cells and the regulation of proliferation, differentiation and patterning in the intestinal epithelium: emerging insights from gene expression patterns, transgenic and gene ablation studies. Mech Dev 2001; 101: 3–9
  • Karam S. M. Lineage commitment and maturation of epithelial cells in the gut. Front Biosci 1999; 4: D286–98
  • Wong W. M., Wright N. A. Cell proliferation in gastrointestinal mucosa. J Clin Pathol 1999; 52: 321–33
  • Cheng H., Leblond C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 1974; 141: 537–61
  • Leedham S. J., Brittan M., McDonald S. A., Wright N. A. Intestinal stem cells. J Cell Mol Med 2005; 9: 11–24
  • Brittan M., Wright N. A. Gastrointestinal stem cells. J Pathol 2002; 197: 492–509
  • Brittan M., Wright N. A. The gastrointestinal stem cell. Cell Prolif 2004; 37: 35–53
  • Booth C., Potten C. S. Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest 2000; 105: 1493–9
  • Cheng H., Leblond C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat 1974; 141: 461–79
  • Thompson M., Fleming K. A., Evans D. J., Fundele R., et al. Gastric endocrine cells share a clonal origin with other gut cell lineages. Development 1990; 110: 477–81
  • Roberts S. A., Potten C. S. Clonogen content of intestinal crypts: its deduction using a microcolony assay on whole mount preparations and its dependence on radiation dose. Int J Radiat Biol 1994; 65: 477–81
  • Krause D. S., Theise N. D., Collector M. I., Henegariu O., et al. Multi‐organ, multi‐lineage engraftment by a single bone marrow‐derived stem cell. Cell 2001; 105: 369–77
  • Brittan M. Bone marrow derived stem cells contribute to multiple cell lineages in experimental colitis. J Pathol 2003; 201((supp))1a
  • Al‐toma A., Visser O. J., van Roessel H. M., von Blomberg B. M., et al. Autologous hematopoietic stem cell transplantation in refractory celiac disease with aberrant T cells. Blood 2007; 109: 2243–9
  • Al‐Toma A., Verbeek W. H., Mulder C. J. Update on the management of refractory coeliac disease. J Gastrointestin Liver Dis 2007; 16: 57–63
  • Rogler G., Andus T. Cytokines in inflammatory bowel disease. World J Surg 1998; 22: 382–9
  • Brittan M., Alison M. R., Schier S., Wright N. A. Bone marrow stem cell‐mediated regeneration in IBD: where do we go from here?. Gastroenterology 2007; 132: 1171–3
  • Khalil P. N., Weiler V., Nelson P. J., Khalil M. N., et al. Nonmyeloablative stem cell therapy enhances microcirculation and tissue regeneration in murine inflammatory bowel disease. Gastroenterology 2007; 132: 944–54
  • Srivastava A. S., Feng Z., Mishra R., Malhotra R., et al. Embryonic stem cells ameliorate piroxicam‐induced colitis in IL10‐/‐ KO mice. Biochem Biophys Res Commun 2007; 361: 953–9
  • Komori M., Tsuji S., Tsujii M., Murata H., et al. Efficiency of bone marrow‐derived cells in regeneration of the stomach after induction of ethanol‐induced ulcers in rats. J Gastroenterol 2005; 40: 591–9
  • Sanders K. M. Interstitial cells of Cajal at the clinical and scientific interface. J Physiol 2006; 576: 683–7
  • Houghton J., Stoicov C., Nomura S., Rogers A. B., et al. Gastric cancer originating from bone marrow‐derived cells. Science 2004; 306: 1568–71
  • Li H., Arber S., Jessell T. M., Edlund H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet 1999; 23: 67–70
  • Ahlgren U., Pfaff S. L., Jessell T. M., Edlund T., et al. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 1997; 385: 257–60
  • Deutsch G., Jung J., Zheng M., Lóra J., et al. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 2001; 28: 871–81
  • Gu G., Dubauskaite J., Melton D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are dis tinct from duct progenitors. Development 2002; 129: 2447–57
  • Jonsson J., Ahlgren U., Edlund T., Edlund H. IPF1, a homeodomain protein with a dual function in pancreas development. Int J Dev Biol 1995; 39: 789–98
  • Krapp A., Knöfler M., Ledermann B., Bürki K., et al. The bHLH protein PTF1‐p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 1998; 12: 3752–63
  • Sumi S., Gu Y., Hiura A., Inoue K. Stem cells and regenerative medicine for diabetes mellitus. Pancreas 2004; 29: e85–9
  • Gangaram‐Panday S. T., Faas M. M., de Vos P. Towards stem‐cell therapy in the endocrine pancreas. Trends Mol Med 2007; 13: 164–73
  • Assady S., Maor G., Amit M., Itskovitz‐Eldor J., et al. Insulin production by human embryonic stem cells. Diabetes 2001; 50: 1691–7
  • Segev H., Fishman B., Ziskind A., Shulman M., et al. Differentiation of human embryonic stem cells into insulin‐producing clusters. Stem Cells 2004; 22: 265–74
  • Blyszczuk P., Czyz J., Kania G., Wagner M., et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin‐positive progenitor and insulin‐producing cells. Proc Natl Acad Sci U S A 2003; 100: 998–1003
  • Fujikawa T., Oh S. H., Pi L., Hatch H. M., et al. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell‐derived insulin‐producing cells. Am J Pathol 2005; 166: 1781–91
  • Pessina A., Eletti B., Croera C., Savalli N., et al. Pancreas developing markers expressed on human mononucleated umbilical cord blood cells. Biochem Biophys Res Commun 2004; 323: 315–22
  • Ende N., Chen R., Reddi A. S. Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochem Biophys Res Commun 2004; 325: 665–9
  • Zhao Y., Wang H., Mazzone T. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 2006; 312: 2454–64
  • Yoshida S., Ishikawa F., Kawano N., Shimoda K., et al. Human cord blood–derived cells generate insulin‐producing cells in vivo. Stem Cells 2005; 23: 1409–16
  • Hess D., Li L., Martin M., Sakano S., Hill D., et al. Bone marrow‐derived stem cells initiate pancreatic regeneration. Nat Biotechnol 2003; 21((7))763–70
  • Tang D. Q., Cao L. Z., Burkhardt B. R., Xia C. Q., et al. In vivo and in vitro characterization of insulin‐producing cells obtained from murine bone marrow. Diabetes 2004; 53: 1721–32
  • Oh S. H., Muzzonigro T. M., Bae S. H., LaPlante J. M., et al. Adult bone marrow‐derived cells trans‐differentiating into insulin‐producing cells for the treatment of type I diabetes. Lab Invest 2004; 84: 607–17
  • Guz Y., Nasir I., Teitelman G. Regeneration of pancreatic beta cells from intra‐islet precursor cells in an experimental model of diabetes. Endocrinology 2001; 142: 4956–68
  • Liu T., Wang C., Wan C., Xiong J., et al. PDX‐1 expression in pancreatic ductal cells after partial pancreatectomy in adult rats. J Huazhong Univ Sci Technolog Med Sci 2004; 24: 464–6
  • Ramiya V. K., Maraist M., Arfors K. E., Schatz D. A., et al. Reversal of insulin‐dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 2000; 6: 278–82
  • Zulewski H., Abraham E. J., Gerlach M. J., Daniel P. B., et al. Multipotential nestin‐positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 2001; 50: 521–33
  • Lechner A., Leech C. A., Abraham E. J., Nolan A. L., et al. Nestin‐positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP‐binding cassette transporter. Biochem Biophys Res Commun 2002; 293: 670–4
  • Nagasao J., Yoshioka K., Amasaki H., Mutoh K. Expression of nestin and IGF‐1 in rat pancreas after streptozotocin administration. Anat Histol Embryol 2004; 33: 1–4
  • Suzuki A., Nakauchi H., Taniguchi H. Prospective isolation of multipotent pancreatic progenitors using flow‐cytometric cell sorting. Diabetes 2004; 53: 2143–52
  • Wang R., Yashpal N., Bacchus F., Li J. Hepatocyte growth factor regulates proliferation and differentiation of epithelial monolayers derived from islets of postnatal rat pancreas. J Endocrinol 2004; 183: 163–71
  • Akin C., Metcalfe D. D. The biology of Kit in disease and the application of pharmacogenetics. J Allergy Clin Immunol 2004; 114: 13–9, quiz 20
  • Yashpal N. K., Li J., Wang R. Characterization of c‐Kit and nestin expression during islet cell development in the prenatal and postnatal rat pancreas. Dev Dyn 2004; 229: 813–25
  • Wang R., Li J., Yashpal N. Phenotypic analysis of c‐Kit expression in epithelial monolayers derived from postnatal rat pancreatic islets. J Endocrinol 2004; 182: 113–22
  • Li W. C., Horb M. E., Tosh D., Slack J. M. In vitro transdifferentiation of hepatoma cells into functional pancreatic cells. Mech Dev 2005; 122: 835–47
  • Cao L. Z., Tang D. Q., Horb M. E., Li S. W., et al. High glucose is necessary for complete maturation of Pdx1‐VP16‐expressing hepatic cells into functional insulin‐producing cells. Diabetes 2004; 53: 3168–78
  • Kojima H., Fujimiya M., Matsumura K., Younan P., et al. NeuroD‐betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 2003; 9: 596–603
  • Zalzman M., Anker‐Kitai L., Efrat S. Differentiation of human liver‐derived, insulin‐producing cells toward the beta‐cell phenotype. Diabetes 2005; 54: 2568–75
  • Timper K., Seboek D., Eberhardt M., Linscheid P., et al. Human adipose tissue‐derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 2006; 341: 1135–40
  • Fujita Y., Cheung A. T., Kieffer T. J. Harnessing the gut to treat diabetes. Pediatr Diabetes 2004; 5((Suppl 2))57–69
  • Sell S. The role of progenitor cells in repair of liver injury and in liver transplantation. Wound Repair Regen 2001; 9: 467–82
  • Sell S. Comparison of liver progenitor cells in human atypical ductular reactions with those seen in experimental models of liver injury. Hepatology 1998; 27: 317–31
  • Feldmann G. Liver transplantation of hepatic stem cells: potential use for treating liver diseases. Cell Biol Toxicol 2001; 17: 77–85
  • Vessey C. J., de la Hall P. M. Hepatic stem cells: a review. Pathology 2001; 33: 130–41
  • Yin L., Lynch D., Sell S. Participation of different cell types in the restitutive response of the rat liver to periportal injury induced by allyl alcohol. J Hepatol 1999; 31: 497–507
  • Regeneration of the liver and kidney, N. L. R Bucher, R. A Malt. Brown and Co, Boston 1971
  • Michalopoulos G. K., DeFrances M. C. Liver regeneration. Science 1997; 276: 60–6
  • Michalopoulos G. K. Liver regeneration. J Cell Physiol 2007; 213: 286–300
  • Overturf K., al‐Dhalimy M., Ou C. N., Finegold M., et al. Serial transplantation reveals the stem‐cell‐like regenerative potential of adult mouse hepatocytes. Am J Pathol 1997; 151: 1273–80
  • Nowak M. A., Bonhoeffer S., Hill A. M., Boehme R., et al. Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci U S A 1996; 93: 4398–402
  • Marshall A., Rushbrook S., Davies S. E., Morris L. S., et al. Relation between hepatocyte G1 arrest, impaired hepatic regeneration, and fibrosis in chronic hepatitis C virus infection. Gastroenterology 2005; 128: 33–42
  • Lowes K. N., Croager E. J., Olynyk J. K., Abraham L. J., et al. Oval cell‐mediated liver regeneration: Role of cytokines and growth factors. J Gastroenterol Hepatol 2003; 18: 4–12
  • Roskams T. A., Theise N. D., Balabaud C., Bhagat G., et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 2004; 39: 1739–45
  • Shackel N. A., Rockey D. C. Stem cells and liver disease: promise laced with confusion and intrigue. Gastroenterology 2004; 127: 346–8
  • Roskams T. Different types of liver progenitor cells and their niches. J Hepatol 2006; 45: 1–4
  • Theise N. D. Gastrointestinal stem cells. III. Emergent themes of liver stem cell biology: niche, quiescence, self‐renewal, and plasticity. Am J Physiol Gastrointest Liver Physiol 2006; 290: G189–93
  • Alison M. R., Lovell M. J. Liver cancer: the role of stem cells. Cell Prolif 2005; 38: 407–21
  • Jelnes P., Santoni‐Rugiu E., Rasmussen M., Friis S. L., et al. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell‐mediated liver regeneration. Hepatology 2007; 45: 1462–70
  • Desmet V., Roskams T., Van Eyken P. Ductular reaction in the liver. Pathol Res Pract 1995; 191: 513–24
  • Theise N. D., Saxena R., Portmann B. C., Thung S. N., et al. The canals of Hering and hepatic stem cells in humans. Hepatology 1999; 30: 1425–33
  • Falkowski O., An H. J., Ianus I. A., Chiriboga L., et al. Regeneration of hepatocyte 'buds' in cirrhosis from intrabiliary stem cells. J Hepatol 2003; 39: 357–64
  • Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 2006; 25: 3818–22
  • Petersen B. E., Grossbard B., Hatch H., Pi L., et al. Mouse A6‐positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology 2003; 37: 632–40
  • Fausto N., Campbell J. S. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 2003; 120: 117–30
  • Tosh D., Strain A. Liver stem cells–prospects for clinical use. J Hepatol 2005; 42 Suppl((1))S75–84
  • Yovchev M. I., Grozdanov P. N., Zhou H., Racherla H., et al. Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology 2007
  • Rountree C. B., Barsky L., Ge S., Zhu J., et al. A CD133‐expressing murine liver oval cell population with bilineage potential. Stem Cells 2007; 25: 2419–29, Epub 2007 Jun 21
  • Crosby H. A. Human Hepatic Stem‐like Cells Isolated Using or CD34 Can Differenziate Into Biliary Epithelium. Gastroenterology 2001; 120: 534–44
  • Parent R., Marion M. J., Furio L., Trépo C., et al. Origin and characterization of a human bipotent liver progenitor cell line. Gastroenterology 2004; 126: 1147–56
  • Duret C., Gerbal‐Chaloin S., Ramos J., Fabre J. M., et al. Isolation, characterization, and differentiation to hepatocyte‐like cells of nonparenchymal epithelial cells from adult human liver. Stem Cells 2007; 25: 1779–90
  • Sicklick J. K., Choi S. S., Bustamante M., McCall S. J., et al. Evidence for epithelial‐mesenchymal transitions in adult liver cells. Am J Physiol Gastrointest Liver Physiol 2006; 291: G575–83
  • Schmelzer E., Wauthier E., Reid L. M. The phenotypes of pluripotent human hepatic progenitors. Stem Cells 2006; 24: 1852–8
  • Herrera M. B., Bruno S., Buttiglieri S., Tetta C., et al. Isolation and characterization of a stem cell population from adult human liver. Stem Cells 2006; 24: 2840–50
  • Rogler C. E., Zhou H. C., Levoci L., Rogler L. E. Clonal, cultured, murine fetal liver hepatoblasts maintain liver specification in chimeric mice. Hepatology 2007; 46: 1971–8
  • Tumbar T., Guasch G., Greco V., Blanpain C., et al. Defining the epithelial stem cell niche in skin. Science 2004; 303: 359–63
  • Masson S., Harrison D. J., Plevris J. N., Newsome P. N. Potential of hematopoietic stem cell therapy in hepatology: a critical review. Stem Cells 2004; 22: 897–907
  • Petersen B. E., Bowen W. C., Patrene K. D., Mars W. M., et al. Bone marrow as a potential source of hepatic oval cells. Science 1999; 284: 1168–70
  • Lagasse E., Connors H., Al‐Dhalimy M., Reitsma M., et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000; 6: 1229–34
  • Piscaglia A. C., Di Campli C., Zocco M. A., Di Gioacchino G., et al. Human cordonal stem cell intraperitoneal injection can represent a rescue therapy after an acute hepatic damage in immunocompetent rats. Transplant Proc 2005; 37: 2711–4
  • Di Campli C., Piscaglia A. C., Pierelli L., Rutella S., et al. A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis 2004; 36: 603–13
  • Petersen B. E., Goff J. P., Greenberger J. S., Michalopoulos G. K. Hepatic oval cells express the hematopoietic stem cell marker Thy‐1 in the rat. Hepatology 1998; 27: 433–45
  • Thorgeirsson S. S., Grisham J. W. Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence. Hepatology 2006; 43: 2–8
  • Kallis Y. N., Alison M. R., Forbes S. J. Bone marrow stem cells and liver disease. Gut 2007; 56: 716–24
  • Hatch H. M., Zheng D., Jorgensen M. L., Petersen B. E. SDF‐1alpha/CXCR4: a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats. Cloning Stem Cells 2002; 4: 339–51
  • Piscaglia A. C., Zocco M. A., Di Campli C., Sparano L., et al. How does human stem cell therapy influence gene expression after liver injury? Microarray evaluation on a rat model. Dig Liver Dis 2005; 37: 952–63
  • Szumilas P., Barcew K., Baśkiewicz‐Masiuk M., Wiszniewska B., et al. Effect of stem cell mobilization with cyclophosphamide plus granulocyte colony‐stimulating factor on morphology of haematopoietic organs in mice. Cell Prolif 2005; 38: 47–61
  • Thomas J., Liu F., Link D. C. Mechanisms of mobilization of hematopoietic progenitors with granulocyte colony‐stimulating factor. Curr Opin Hematol 2002; 9: 183–9
  • Yannaki E., Athanasiou E., Xagorari A., Constantinou V., et al. G‐CSF‐primed hematopoietic stem cells or G‐CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol 2005; 33: 108–19
  • Quintana‐Bustamante O., Alvarez‐Barrientos A., Kofman A. V., Fabregat I., et al. Hematopoietic mobilization in mice increases the presence of bone marrow‐derived hepatocytes via in vivo cell fusion. Hepatology 2006; 43: 108–16
  • Huiling X., Inagaki M., Arikura J., Ozaki A., et al. Hepatocytes derived from peripheral blood stem cells of granulocyte‐colony stimulating factor treated F344 rats in analbuminemic rat livers. J Surg Res 2004; 122: 75–82
  • Gaia S., Smedile A., Omedè P., Olivero A., et al. Feasibility and safety of G‐CSF administration to induce bone marrow‐derived cells mobilization in patients with end stage liver disease. J Hepatol 2006; 45: 13–9
  • Theocharis S. E., Margeli A. P., Goutas N. D., Horti M. G., et al. Granulocyte colony‐stimulating factor administration reverses cadmium‐associated inhibition of hepatocyte regeneration. Eur J Gastroenterol Hepatol 1996; 8: 805–9
  • Theocharis S. E., Papadimitriou L. J., Retsou Z. P., Margeli A. P., et al. Granulocyte‐colony stimulating factor administration ameliorates liver regeneration in animal model of fulminant hepatic failure and encephalopathy. Dig Dis Sci 2003; 48: 1797–803
  • Piscaglia A. C., Shupe T. D., Oh S. H., Gasbarrini A., et al. Granulocyte‐colony stimulating factor promotes liver repair and induces oval cell migration and proliferation in rats. Gastroenterology 2007; 133: 619–31
  • Bellentani S., Tiribelli C. The spectrum of liver disease in the general population: lesson from the Dionysos study. J Hepatol 2001; 35: 531–7
  • Walkup M. H., Gerber D. A. Hepatic stem cells: in search of. Stem Cells 2006; 24: 1833–40
  • Fiegel H. C., Lange C., Kneser U., Lambrecht W., et al. Fetal and adult liver stem cells for liver regeneration and tissue engineering. J Cell Mol Med 2006; 10: 577–87
  • Di Campli C., Nestola M., Piscaglia A. C., Santoliquido A., et al. Cell‐based therapy for liver diseases. Eur Rev Med Pharmacol Sci 2003; 7: 41–4
  • Mallet V. O., Gilgenkrantz H. Mobilizing stem cells to repair liver after surgery: dream or reality?. J Hepatol 2005; 43: 754–6
  • De Silvestro G., Vicarioto M., Donadel C., Menegazzo M., et al. Mobilization of peripheral blood hematopoietic stem cells following liver resection surgery. Hepatogastroenterology 2004; 51: 805–10
  • Gehling U. M., Willems M., Dandri M., Petersen J., et al. Partial hepatectomy induces mobilization of a unique population of haematopoietic progenitor cells in human healthy liver donors. J Hepatol 2005; 43: 845–53
  • am Esch J. S 2nd., Knoefel W. T., Klein M., Ghodsizad A., et al. Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells 2005; 23: 463–70
  • Terai S., Ishikawa T., Omori K., Aoyama K., et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 2006; 24: 2292–8
  • Mohamadnejad M., Namiri M., Bagheri M., Hashemi S. M., et al. Phase 1 human trial of autologous bone marrow‐hematopoietic stem cell transplantation in patients with decompensated cirrhosis. World J Gastroenterol 2007; 13: 3359–63
  • Yannaki E., Anagnostopoulos A., Kapetanos D., Xagorari A., et al. Lasting amelioration in the clinical course of decompensated alcoholic cirrhosis with boost infusions of mobilized peripheral blood stem cells. Exp Hematol 2006; 34: 1583–7
  • Gordon M. Y., Levicar N., Pai M., Bachellier P., et al. Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony‐stimulating factor. Stem Cells 2006; 24: 1822–30
  • Gasbarrini A., Rapaccini G. L., Rutella S., Zocco M. A., et al. Rescue therapy by portal infusion of autologous stem cells in a case of drug‐induced hepatitis. Dig Liver Dis 2007; 39: 878–82
  • Lorenzini S., Andreone P. Stem cell therapy for human liver cirrhosis: a cautious analysis of the results. Stem Cells 2007; 25: 2383–4, Epub 2007 May 31
  • Reya T., Morrison S. J., Clarke M. F., Weissman I. L. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–11
  • Al‐Hajj M., Becker M. W., Wicha M., Weissman I., et al. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 2004; 14: 43–7
  • Yin S., Li J., Hu C., Chen X., et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007; 120: 1444–50
  • Ma S., Chan K. W., Hu L., Lee T. K., et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132: 2542–56
  • Chiba T., Kita K., Zheng Y. W., Yokosuka O., et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell‐like properties. Hepatology 2006; 44: 240–51
  • Ricci‐Vitiani L., Lombardi D. G., Pilozzi E., Biffoni M., et al. Identification and expansion of human colon‐cancer‐initiating cells. Nature 2007; 445: 111–5
  • Jamieson C. H., Ailles L. E., Dylla S. J., Muijtjens M., et al. Granulocyte‐macrophage progenitors as candidate leukemic stem cells in blast‐crisis CML. N Engl J Med 2004; 351: 657–67
  • Krivtsov A. V., Twomey D., Feng Z., Stubbs M. C., et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL‐AF9. Nature 2006; 442: 818–22
  • Li L., Neaves W. B. Normal stem cells and cancer stem cells: the niche matters. Cancer Res 2006; 66: 4553–7
  • Jordan C. T., Guzman M. L., Noble M. Cancer stem cells. N Engl J Med 2006; 355: 1253–61
  • Bruns C. J., Shrader M., Harbison M. T., Portera C., et al. Effect of the vascular endothelial growth factor receptor‐2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. Int J Cancer 2002; 102: 101–8
  • Conrad C., Ischenko I., Köhl G., Wiegand U., et al. Antiangiogenic and antitumor activity of a novel vascular endothelial growth factor receptor‐2 tyrosine kinase inhibitor ZD6474 in a metastatic human pancreatic tumor model. Anticancer Drugs 2007; 18: 569–79
  • Kanai T., Konno H., Tanaka T., Baba M., et al. Anti‐tumor and anti‐metastatic effects of human‐vascular‐endothelial‐growth‐factor‐neutralizing antibody on human colon and gastric carcinoma xenotransplanted orthotopically into nude mice. Int J Cancer 1998; 77: 933–6
  • Piscaglia A. C., Shupe T. D., Oh S., Steiger N., et al. Establishment of rat liver cancer stem cell lines expressing G‐CSFR and role of G‐CSF/G‐CSFR axis in modulating their proliferation and migration potential. Hepatology 2007; 46((Suppl4))68A
  • Mimeault M., Hauke R., Mehta P. P., Batra S. K. Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med 2007; 11: 981–1011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.