128
Views
26
CrossRef citations to date
0
Altmetric
Review article

Stem cell‐based cellular replacement strategies following traumatic brain injury (TBI)

&
Pages 119-131 | Published online: 10 Jul 2009

References

  • Bruns J, Jr., Hauser W. A. The epidemiology of traumatic brain injury: a review. Epilepsia 2003; 44 Suppl 10: 2–10
  • Sosin D. M., Sacks J. J., Webb K. W. Pediatric head injuries and deaths from bicycling in the United States. Pediatrics 1996; 98: 868–70
  • Ghajar J. Traumatic brain injury. Lancet 2000; 356: 923–9
  • Murray C. J., Lopez A. D. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997; 349: 1436–42
  • Maegele M., Engel D., Bouillon B., Lefering R., et al. Incidence and outcome of traumatic brain injury in an urban area in Western Europe over 10 years. Eur Surg Res 2007; 39: 372–9
  • Harrahill M. Management of severe head injury: new document provides guidelines. Brain Trauma Foundation. J Emerg Nurs 1997; 23: 282–3
  • Jennett B. Prognosis after severe head injury. Clin Neurosurg 1972; 19: 200–7
  • Smith D. H., Chen X. H., Pierce J. E., Wolf J. A., et al. Progressive atrophy and neuron death for one year following brain trauma in the rat. J Neurotrauma 1997; 14: 715–27
  • McIntosh T. K., Juhler M., Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma 1998; 15: 731–69
  • Royo N. C., Shimizu S., Schouten J. W., Stover J. F., et al. Pharmacology of traumatic brain injury. Curr Opin Pharmacol 2003; 3: 27–32
  • Schouten J. W., Fulp C. T., Royo N. C., Saatman K. E., et al. A review and rationale for the use of cellular transplantation as a therapeutic strategy for traumatic brain injury. J Neurotrauma 2004; 21: 1501–38
  • Horner P. J., Gage F. H. Regenerating the damaged central nervous system. Nature 2000; 407: 963–70
  • Gage F. H. Mammalian neural stem cells. Science 2000; 287: 1433–8
  • Lindvall O. Prospects of transplantation in human neurodegenerative diseases. Trends Neurosci 1991; 14: 376–84
  • Altman J., Das G. D. Postnatal neurogenesis in the guinea‐pig. Nature 1967; 214: 1098–101
  • Goldman S. A., Nottebohm F. Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci U S A 1983; 80: 2390–4
  • Bjorklund A., Lindvall O. Cell replacement therapies for central nervous system disorders. Nat Neurosci 2000; 3: 537–44
  • Dunnett S. B., Bjorklund A., Lindvall O. Cell therapy in Parkinson's disease – stop or go?. Nat Rev Neurosci 2001; 2: 365–9
  • Kondziolka D., Wechsler L., Goldstein S., Meltzer C., et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 2000; 55: 565–9
  • Thomson J. A., Itskovitz‐Eldor J., Shapiro S. S., Waknitz M. A., et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–7
  • McKay R. Stem cells in the central nervous system. Science 1997; 276: 66–71
  • Emsley J. G., Mitchell B. D., Kempermann G., Macklis J. D. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 2005; 75: 321–41
  • Seaberg R. M., van der Kooy D. Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 2003; 26: 125–31
  • Ryder E. F., Snyder E. Y., Cepko C. L. Establishment and characterization of multipotent neural cell lines using retrovirus vector‐mediated oncogene transfer. J Neurobiol 1990; 21: 356–75
  • Riess P., Zhang C., Saatman K. E., Laurer H. L., et al. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 2002; 51: 1043–52; discussion 52–4
  • Boockvar J. A., Schouten J., Royo N., Millard M., et al. Experimental traumatic brain injury modulates the survival, migration, and terminal phenotype of transplanted epidermal growth factor receptor‐activated neural stem cells. Neurosurgery 2005; 56: 163–71; discussion 71
  • Bakshi A., Keck C. A., Koshkin V. S., LeBold D. G., et al. Caspase‐mediated cell death predominates following engraftment of neural progenitor cells into traumatically injured rat brain. Brain Res 2005; 1065: 8–19
  • Lundberg C., Field P. M., Ajayi Y. O., Raisman G., et al. Conditionally immortalized neural progenitor cell lines integrate and differentiate after grafting to the adult rat striatum. A combined autoradiographic and electron microscopic study. Brain Res 1996; 737: 295–300
  • Renfranz P. J., Cunningham M. G., McKay R. D. Region‐specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell 1991; 66: 713–29
  • Philips M. F., Mattiasson G., Wieloch T., Bjorklund A., et al. Neuroprotective and behavioral efficacy of nerve growth factor‐transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg 2001; 94: 765–74
  • Lenzlinger P. M., Marx A., Trentz O., Kossmann T., et al. Prolonged intrathecal release of soluble Fas following severe traumatic brain injury in humans. J Neuroimmunol 2002; 122: 167–74
  • Sinden J. D., Rashid‐Doubell F., Kershaw T. R., Nelson A., et al. Recovery of spatial learning by grafts of a conditionally immortalized hippocampal neuroepithelial cell line into the ischaemia‐lesioned hippocampus. Neuroscience 1997; 81: 599–608
  • Sinden J. D., Stroemer P., Grigoryan G., Patel S., et al. Functional repair with neural stem cells. Novartis Found Symp 2000; 231: 270–83; discussion 83–8, 302–6
  • Wong A. M., Hodges H., Horsburgh K. Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia. Brain Res 2005; 1063: 140–50
  • Prestoz L., Relvas J. B., Hopkins K., Patel S., et al. Association between integrin‐dependent migration capacity of neural stem cells in vitro and anatomical repair following transplantation. Mol Cell Neurosci 2001; 18: 473–84
  • Trojanowski J. Q., Kleppner S. R., Hartley R. S., Miyazono M., et al. Transfectable and transplantable postmitotic human neurons: a potential “platform” for gene therapy of nervous system diseases. Exp Neurol 1997; 144: 92–7
  • Zhang C., Saatman K. E., Royo N. C., Soltesz K. M., et al. Delayed transplantation of human neurons following brain injury in rats: a long‐term graft survival and behavior study. J Neurotrauma 2005; 22: 1456–74
  • Longhi L., Watson D. J., Saatman K. E., Thompson H. J., et al. Ex vivo gene therapy using targeted engraftment of NGF‐expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma 2004; 21: 1723–36
  • Tate M. C., Shear D. A., Hoffman S. W., Stein D. G., et al. Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain. Cell Transplant 2002; 11: 283–95
  • Shear D. A., Tate M. C., Archer D. R., Hoffman S. W., et al. Neural progenitor cell transplants promote long‐term functional recovery after traumatic brain injury. Brain Res 2004; 1026: 11–22
  • Hoane M. R., Becerra G. D., Shank J. E., Tatko L., et al. Transplantation of neuronal and glial precursors dramatically improves sensorimotor function but not cognitive function in the traumatically injured brain. J Neurotrauma 2004; 21: 163–74
  • Erdo F., Buhrle C., Blunk J., Hoehn M., et al. Host‐dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 2003; 23: 780–5
  • Erdo F., Trapp T., Buhrle C., Fleischmann B., et al. [Embryonic stem cell therapy in experimental stroke: host‐dependent malignant transformation]. Orv Hetil 2004; 145: 1307–13
  • Hoehn M., Kustermann E., Blunk J., Wiedermann D., et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A 2002; 99: 16267–72
  • Arnhold S., Lenartz D., Kruttwig K., Klinz F. J., et al. Differentiation of green fluorescent protein‐labeled embryonic stem cell‐derived neural precursor cells into Thy‐1‐positive neurons and glia after transplantation into adult rat striatum. J Neurosurg 2000; 93: 1026–32
  • Riess P., Molcanyi M., Bentz K., Maegele M., et al. Embryonic stem cell transplantation after experimental traumatic brain injury dramatically improves neurological outcome, but may cause tumors. J Neurotrauma 2007; 24: 216–25
  • Okano H. Stem cell biology of the central nervous system. J Neurosci Res 2002; 69: 698–707
  • Keeling K. L., Hicks R. R., Mahesh J., Billings B. B., et al. Local neutrophil influx following lateral fluid‐percussion brain injury in rats is associated with accumulation of complement activation fragments of the third component (C3) of the complement system. J Neuroimmunol 2000; 105: 20–30
  • Soares H. D., Hicks R. R., Smith D., McIntosh T. K. Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 1995; 15: 8223–33
  • Thompson H. J., Hoover R. C., Tkacs N. C., Saatman K. E., et al. Development of posttraumatic hyperthermia after traumatic brain injury in rats is associated with increased periventricular inflammation. J Cereb Blood Flow Metab 2005; 25: 163–76
  • Molcanyi M., Riess P., Bentz K., Maegele M., et al. Trauma‐associated inflammatory response impairs embryonic stem cell survival and integration after implantation into injured rat brain. J Neurotrauma 2007; 24: 625–37
  • Giulian D., Chen J., Ingeman J. E., George J. K., et al. The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J Neurosci 1989; 9: 4416–29
  • Persson L. Cellular reactions to small cerebral stab wounds in the rat frontal lobe. An ultrastructural study. Virchows Arch B Cell Pathol 1976; 22: 21–37
  • Bentz K., Molcanyi M., Riess P., Elbers A., et al. Embryonic stem cells produce neurotrophins in response to cerebral tissue extract: Cell line‐dependent differences. J Neurosci Res 2007; 85: 1057–64
  • Chen X., Katakowski M., Li Y., Lu D., et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res 2002; 69: 687–91
  • Vescovi A. L., Gritti A., Galli R., Parati E. A. Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J Neurotrauma 1999; 16: 689–93
  • Wennersten A., Holmin S., Al Nimer F., Meijer X., et al. Sustained survival of xenografted human neural stem/progenitor cells in experimental brain trauma despite discontinuation of immunosuppression. Exp Neurol 2006; 199: 339–47
  • Englund U., Bjorklund A., Wictorin K. Migration patterns and phenotypic differentiation of long‐term expanded human neural progenitor cells after transplantation into the adult rat brain. Brain Res Dev Brain Res 2002; 134: 123–41
  • Wennersten A., Meier X., Holmin S., Wahlberg L., et al. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg 2004; 100: 88–96
  • Hagan M., Wennersten A., Meijer X., Holmin S., et al. Neuroprotection by human neural progenitor cells after experimental contusion in rats. Neurosci Lett 2003; 351: 149–52
  • Sanchez‐Ramos J. R. Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res 2002; 69: 880–93
  • Mahmood A., Lu D., Yi L., Chen J. L., et al. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J Neurosurg 2001; 94: 589–95
  • Lu D., Li Y., Wang L., Chen J., et al. Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma 2001; 18: 813–9
  • Lu D., Mahmood A., Wang L., Li Y., et al. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 2001; 12: 559–63
  • Mahmood A., Lu D., Wang L., Li Y., et al. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 2001; 39: 1196–203; discussion 203–4
  • Mahmood A., Lu D., Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 2004; 21: 33–9
  • Mahmood A., Lu D., Qu C., Goussev A., et al. Human marrow stromal cell treatment provides long‐lasting benefit after traumatic brain injury in rats. Neurosurgery 2005; 57: 1026–31; discussion ‐31
  • Mahmood A., Lu D., Qu C., Goussev A., et al. Treatment of traumatic brain injury with a combination therapy of marrow stromal cells and atorvastatin in rats. Neurosurgery 2007; 60: 546–53; discussion 53–4
  • Le Belle J. E., Svendsen C. N. Stem cells for neurodegenerative disorders: where can we go from here?. BioDrugs 2002; 16: 389–401
  • Soares H., McIntosh T. K. Fetal cortical transplants in adult rats subjected to experimental brain injury. J Neural Transplant Plast 1991; 2: 207–20
  • Dezawa M., Kanno H., Hoshino M., Cho H., et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004; 113: 1701–10
  • Sortwell C. E. Strategies for the augmentation of grafted dopamine neuron survival. Front Biosci 2003; 8: s522–32
  • Shindo T., Matsumoto Y., Wang Q., Kawai N., et al. Differences in the neuronal stem cells survival, neuronal differentiation and neurological improvement after transplantation of neural stem cells between mild and severe experimental traumatic brain injury. J Med Invest 2006; 53: 42–51
  • Hoehn M., Wiedermann D., Justicia C., Ramos‐Cabrer P., et al. Cell tracking using magnetic resonance imaging. J Physiol 2007; 594: 25–30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.