2,572
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Influence of sampling accuracy on augmented reality for laparoscopic image-guided surgery

ORCID Icon, , , , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 229-238 | Received 29 Aug 2019, Accepted 10 Jan 2020, Published online: 05 Mar 2020

References

  • Cleary K, Peters TM. Image-guided interventions: technology review and clinical applications. Annu Rev Biomed Eng. 2010;12(1):119–142.
  • Hallet J, Soler L, Diana M, et al. Trans-thoracic minimally invasive liver resection guided by augmented reality. J Am Coll Surg. 2015;220(5):e55–e60.
  • Bernhardt S, Nicolau SA, Soler L, et al. The status of augmented reality in laparoscopic surgery as of 2016. Med Image Anal. 2017;37:66–90.
  • Teatini A, Frutos JD, Langø T, et al. Assessment and comparison of target registration accuracy in surgical instrument tracking technologies. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:1845–1848.
  • Palomar R, Cheikh FA, Edwin B, et al. Surface reconstruction for planning and navigation of liver resections. Comput Med Imaging Graph. 2016;53:30–42.
  • Heiselman JS, Clements LW, Collins JA, et al. Characterization and correction of intraoperative soft tissue deformation in image-guided laparoscopic liver surgery. J Med Imag. 2018;5(2):021203.
  • Aghayan DL, Pelanis E, Fretland ÅA, et al. Laparoscopic parenchyma-sparing liver resection for colorectal metastases. Radio Oncol. 2017;52(1):36–41.
  • Fretland AA, Dagenborg VJ, Bjørnelv GMW, et al. Laparoscopic versus open resection for colorectal liver metastases. Ann Surg. 2018;267(2):199–207.
  • Aghayan DL, Fretland ÅA, Kazaryan AM, et al. Laparoscopic versus open liver resection in the posterosuperior segments: a sub-group analysis from the OSLO-COMET randomized controlled trial. HPB (Oxford). 2019;21(11):1485–1490.
  • Mountney P, Fallert J, Nicolau S, et al. An augmented reality framework for soft tissue surgery. Lecture Notes Comput Sci. 2014;17:423–431.
  • Thompson S, Stoyanov D, Schneider C, et al. Hand-eye calibration for rigid laparoscopes using an invariant point. Int J Comput Assist Radiol Surg. 2016;11(6):1071–1080.
  • Zhang Z. A flexible new technique for camera calibration. IEEE Trans Pattern Anal Machine Intell. 2000;22(11):1330–1334.
  • Lee S, Lee H, Choi H, et al. Effective calibration of an endoscope to an optical tracking system for medical augmented reality. Cogent Eng. 2017;4:1–11.
  • Lai M, Shan C. Hand-eye camera calibration with an optical tracking system. Proceedings of the 12th International Conference on Distributed Smart Cameras. New York (NY): ACM; 2018. p. 18.
  • Modat M, Ridgway GR, Taylor ZA, et al. Fast free-form deformation using graphics processing units. Comput Methods Programs Biomed. 2010;98(3):278–284.
  • Fitzpatrick JM. Fiducial registration error and target registration error are uncorrelated. 2009;7261:726102. Available from http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.813601.
  • Pérez de Frutos J, Hofstad EF, Solberg OV, et al. Laboratory test of Single Landmark registration method for ultrasound-based navigation in laparoscopy using an open-source platform. Int J Comput Assist Radiol Surg. 2018;13(12):1927–1936.
  • Thompson S, Totz J, Song Y, et al. Accuracy validation of an image guided laparoscopy system for liver resection. Proc SPIE. 2015;9415:941509.
  • Thompson S, Schneider C, Bosi M, et al. In vivo estimation of target registration errors during augmented reality laparoscopic surgery. Int J Comput Assist Radiol Surg. 2018;13(6):865–874.
  • Pacioni A, Carbone M, Freschi C, et al. Patient-specific ultrasound liver phantom: materials and fabrication method. Int J Comput Assist Radial Surg. 2015;10(7):1065–1075.
  • Liu W, Ding H, Han H, et al. The study of fiducial localization error of image in point-based registration. Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society Engineering the Future of Biomedice; EMBC; 2009. p. 5088–5091.
  • Teatini A, Pelanis E, Aghayan DL, et al. The effect of intraoperative imaging on surgical navigation for laparoscopic liver resection surgery. Sci Rep. 2019;9(1):18687 doi:10.1038/s41598-019-54915-3. PMC: 31822701
  • Andrea T, Congcong W, Rafael P, et al. Validation of stereo vision based liver surface reconstruction for image guided surgery. Colour Vis Comput Symp. 2018;2018:1–6.
  • Fusaglia M, Tinguely P, Banz V, et al. A novel ultrasound-based registration for image-guided laparoscopic liver ablation. Surg Innov. 2016;23(4):397–406.
  • Faure F, Duriez C, Delingette H, et al. SOFA: a multi-model framework for interactive physical simulation. 2012.
  • Nikolaev S, Peterlik I, Cotin S, et al. Stochastic correction of boundary conditions during liver surgery to cite this version: HAL Id: hal-01823810 Stochastic Correction of Boundary Conditions during Liver Surgery. 2018.
  • Özgür E, Koo B, Le Roy B, et al. Preoperative liver registration for augmented monocular laparoscopy using backward–forward biomechanical simulation. Int J Comput Assist Radiol Surg. 2018;13(10):1629–1640.
  • Peterlik I, Courtecuisse H, Rohling R, et al. Fast elastic registration of soft tissues under large deformations to cite this version: HAL Id: hal-01613757. 2018.
  • Postriganova N, Kazaryan AM, Røsok BI, et al. Margin status after laparoscopic resection of colorectal liver metastases: does a narrow resection margin have an influence on survival and local recurrence? HPB. 2014;16(9):822–829.