46
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Robotic-assisted versus manual Uro Dyna-CT-guided puncture in an ex-vivo kidney phantom

, , , , , , , & ORCID Icon show all
Pages 102-108 | Received 27 Mar 2023, Accepted 15 Nov 2023, Published online: 04 Dec 2023

References

  • Marconi L, Dabestani S, Lam TB, et al. Systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy. Eur Urol. 2016;69(4):660–673. doi: 10.1016/j.eururo.2015.07.072.
  • Delahunt B, Samaratunga H, Martignoni G, et al. Percutaneous renal tumour biopsy. Histopathology. 2014;65(3):295–308. doi: 10.1111/his.12495.
  • Patel HD, Gupta M, Joice GA, et al. Clinical stage migration and survival for renal cell carcinoma in the United States. Eur Urol Oncol. 2019;2(4):343–348. doi: 10.1016/j.euo.2018.08.023.
  • Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018;103:356–387. doi: 10.1016/j.ejca.2018.07.005.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492.
  • Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European association of urology guidelines on renal cell carcinoma: the 2019 update. Eur Urol. 2019;75(5):799–810. doi: 10.1016/j.eururo.2019.02.011.
  • Ritter M, Rassweiler M-C, Michel MS. The uro Dyna-CT enables three-dimensional planned laser-guided complex punctures. Eur Urol. 2015;68(5):880–884. doi: 10.1016/j.eururo.2015.07.005.
  • Rassweiler J, Rassweiler M-C, Müller M, et al. Surgical navigation in urology: european perspective. Curr Opin Urol. 2014;24(1):81–97. doi: 10.1097/MOU.0000000000000014.
  • Hajiha M, Baldwin DD. New technologies to aid in percutaneous access. Urol Clin North Am. 2019;46(2):225–243. doi: 10.1016/j.ucl.2019.01.001.
  • Rassweiler-Seyfried M-C, Lima E, Ritter M, et al. Navigated percutaneous access to the kidney. Urologe A. 2020;59(9):1017–1025. doi: 10.1007/s00120-020-01250-5.
  • LeMaitre L, Mestdagh P, Marecaux-Delomez J, et al. Percutaneous nephrostomy: placement under laser guidance and real-time CT fluoroscopy. Eur Radiol. 2000;10(6):892–895. doi: 10.1007/s003300051030.
  • Jiao D, Zhang Z, Sun Z, et al. Percutaneous nephrolithotripsy: c -arm CT with 3D virtual navigation in non-dilated renal collecting systems. Diagn Interv Radiol. 2018;24(1):17–22. doi: 10.5152/dir.2017.17079.
  • Ritter M, Rassweiler M-C, Häcker A, et al. Laser-guided percutaneous kidney access with the uro Dyna-CT: first experience of three-dimensional puncture planning with an ex vivo model. World J Urol. 2013;31(5):1147–1151. doi: 10.1007/s00345-012-0847-8.
  • Michel MS, Ritter M, Schönberg S, et al. The urological Dyna-CT: urological sectional imaging on a newly developed urological intervention table. Urologe A. 2012;51(6):857–861. doi: 10.1007/s00120-012-2837-2.
  • Su L-M, Stoianovici D, Jarrett TW, et al. Robotic percutaneous access to the kidney: comparison with standard manual access. J Endourol. 2002;16(7):471–475. doi: 10.1089/089277902760367421.
  • Oo MM, Gandhi HR, Chong KT, et al. Automated needle targeting with X-ray (ANT-X) - robot-assisted device for percutaneous nephrolithotomy (PCNL) with its first successful use in human. J Endourol. 2021;35(6):e919. doi: 10.1089/end.2018.0003.
  • Taguchi K, Hamamoto S, Okada A, et al. Robot-assisted fluoroscopy versus ultrasound-guided renal access for nephrolithotomy: a phantom model benchtop study. J Endourol. 2019;33(12):987–994. doi: 10.1089/end.2019.0432.
  • Guiu B, De Baère T, Noel G, et al. Feasibility, safety and accuracy of a CT-guided robotic assistance for percutaneous needle placement in a swine liver model. Sci Rep. 2021;11(1):5218. doi: 10.1038/s41598-021-84878-3.
  • Pfeil A, Cazzato RL, Barbé L, et al. Robotically assisted CBCT-guided needle insertions: preliminary results in a phantom model. Cardiovasc Intervent Radiol. 2019;42(2):283–288. doi: 10.1007/s00270-018-2088-8.
  • Komaki T, Hiraki T, Kamegawa T, et al. Robotic CT-guided out-of-plane needle insertion: comparison of angle accuracy with manual insertion in phantom and measurement of distance accuracy in animals. Eur Radiol. 2020;30(3):1342–1349. doi: 10.1007/s00330-019-06477-1.
  • Wei L, Jiang S, Yang Z, et al. A CT-guided robotic needle puncture method for lung tumours with respiratory motion. Phys Med. 2020;73:48–56. doi: 10.1016/j.ejmp.2020.04.003.
  • Zhu JH, Wang J, Liu XJ, et al. Accuracy analysis of robotic assistant needle placement for lateral skull base biopsy. Zhonghua Kou Qiang Yi Xue Za Zhi Zhonghua Kouqiang Yixue Zazhi Chin J Stomatol. 2018;53:519–523.
  • Kostrzewa M, Rothfuss A, Pätz T, et al. Robotic assistance system for Cone-Beam computed tomography-guided percutaneous needle placement. Cardiovasc Intervent Radiol. 2021;45(1):62–68. 10.1007/s00270-021-02938-7.
  • Gupta R, Cheung AC, Bartling SH, et al. Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics. 2008;28(7):2009–2022. doi: 10.1148/rg.287085004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.