1,613
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Zinc protects against lead-induced testicular damage via modulation of steroidogenic and xanthine oxidase/uric acid/caspase 3-mediated apoptotic signaling in male Wistar rats

, , , , , , & ORCID Icon show all
Article: 2224428 | Received 06 Mar 2023, Accepted 06 Jun 2023, Published online: 23 Jun 2023

References

  • Ige SF, Akhigbe RE. Common onion (Allium cepa) extract reverses cadmium-induced organ toxicity and dyslipidaemia via redox alteration in rats. Pathophysiology. 2013;20(4):269–274. doi: 10.1016/j.pathophys.2013.04.002.
  • Ige SF, Akhigbe RE. The role of Allium cepa on aluminum-induced reproductive dysfunction in experimental male rat models. J Hum Reprod Sci. 2012;5(2):200–205. doi: 10.4103/0974-1208.101022.
  • Ige SF, Olaleye SB, Akhigbe RE, et al. Testicular toxicity and sperm quality following cadmium exposure in rats: ameliorative potentials of Allium cepa. J Hum Reprod Sci. 2012;5(1):37–42. doi: 10.4103/0974-1208.97798.
  • Jaishankar M, Tseten T, Anbalagan N, et al. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60–72. doi: 10.2478/intox-2014-0009.
  • D'souza HS, Dsouza SA, Menezes G, et al. Diagnosis, evaluation, and treatment of lead poisoning in general population. Indian J Clin Biochem. 2011;26(2):197–201. doi: 10.1007/s12291-011-0122-6.
  • Patra RC, Rautray AK, Swarup D. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int. 2011;2011:457327. doi: 10.4061/2011/457327.
  • Phyu MP, Tangpong J. Protective effect of Thunbergia laurifolia (linn.) on lead-induced acetylcholinesterase dysfunction and cognitive impairment in mice. Biomed Res Int. 2013;2013:186098. doi: 10.1155/2013/186098.
  • Abadin H, Ashizawa A, Stevens Y, et al. Toxicological profile for lead. Agency for Toxic Substances and Disease Registry. 2007;
  • Li X, Zhang Z, Li P, et al. Determination for major chemical contaminants in tea (Camellia sinensis) matrices: a review. Food Res Int. 2013;53(2):649–658. doi: 10.1016/j.foodres.2012.12.048.
  • Nagarajan S, Sivaji K, Krishnaswamy S, et al. Safety and toxicity issues associated with lead-based traditional herbo-metallic preparations. J Ethnopharmacol. 2014;151(1):1–11. doi: 10.1016/j.jep.2013.10.037.
  • Ozsoy SY, Ozsoy B, Ozyildiz Z, et al. Protective effect of L-carnitine on experimental lead toxicity in rats: a clinical, histopathological and immunohistochemical study. Biotech Histochem. 2011;86(6):436–443. doi: 10.3109/10520295.2010.529825.
  • Aglan HS, Gebremedhn S, Salilew-Wondim D, et al. Regulation of Nrf2 and NF-κB during lead toxicity in bovine granulosa cells. Cell Tissue Res. 2020;380(3):643–655. doi: 10.1007/s00441-020-03177-x.
  • BaSalamah MA, Abdelghany AH, El-Boshy M, et al. Vitamin D alleviates lead-induced renal and testicular injuries by immunomodulatory and antioxidant mechanisms in rats. Sci Rep. 2018;8(1):4853. doi: 10.1038/s41598-018-23258-w.
  • Elgawish RAR, Abdelrazek HMA. Effects of lead acetate on testicular function and caspase-3 expression with respect to the protective effect of cinnamon in albino rats. Toxicol Rep. 2014;1:795–801. doi: 10.1016/j.toxrep.2014.10.010.
  • Chowdhury AR. Recent advances in heavy metals induced effect on male reproductive function - a retrospective. Al Ameen J Med Sci. 2009;2:37–42.
  • Anjum MR, Madhu P, Reddy KP, et al. The protective effects of zinc in lead-induced testicular and epididymal toxicity in Wistar rats. Toxicol Ind Health. 2017;33(3):265–276. doi: 10.1177/0748233716637543.
  • Shan G, Tang T, Zhang X. The protective effect of ascorbic acid and thiamine supplementation against damage caused by lead in the testes of mice. J Huazhong Univ Sci Technolog Med Sci. 2009;29(1):68–72. doi: 10.1007/s11596-009-0114-4.
  • Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 2012;5(2):47–58. doi: 10.2478/v10102-012-0009-2.
  • Akhigbe R, Ajayi A. Testicular toxicity following chronic codeine administration is via oxidative DNA damage and up-regulation of NO/TNF-α and caspase 3 activities. PLoS One. 2020;15(3):e0224052. doi: 10.1371/journal.pone.0224052.
  • Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev. 2016;2016:5698931. doi: 10.1155/2016/5698931.
  • Akhigbe R, Ajayi A. The impact of reactive oxygen species in the development of cardiometabolic disorders: a review. Lipids Health Dis. 2021;20(1):23. doi: 10.1186/s12944-021-01435-7.
  • El-Nekeety AA, El-Kady AA, Soliman MS, et al. Protective effect of Aquilegia vulgaris (L.) against lead acetate-induced oxidative stress in rats. Food Chem Toxicol. 2009;47(9):2209–2215. doi: 10.1016/j.fct.2009.06.019.
  • Abdel Moniem AE, Dkhil MA, Al-Quraishy S. Protective role of flaxseed oil against lead acetate induced oxidative stress in testes of adult rats. Afr. J. Biotech. 2010;9:7216–7223.
  • Yousef AO, A Fahad A, Abdel Moneim AE, et al. The neuroprotective role of coenzyme Q10 against lead acetate-induced neurotoxicity is mediated by antioxidant, anti-Inflammatory and anti-Apoptotic activities. IJERPH. 2019;16(16):2895. doi: 10.3390/ijerph16162895.
  • Balali-Mood M, Naseri K, Tahergorabi Z, et al. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;12:643972. doi: 10.3389/fphar.2021.643972.
  • Karweina D, Kreuzer-Redmer S, Müller U, et al. The zinc concentration in the diet and the length of the feeding period affect the methylation status of the ZIP4 zinc transporter gene in piglets. PloS One. 2015;10(11):e0143098. doi: 10.1371/journal.pone.0143098.
  • Sadik NA. Effects of diallyl sulfide and zinc on testicular steroidogenesis in cadmium‐treated male rats. J Biochem Mol Toxicol. 2008;22(5):345–353. doi: 10.1002/jbt.20247.
  • Sharma A, Patni B, Shankhdhar D, et al. Zinc – an indispensable micronutrient. Physiol Mol Biol Plants. 2013;19(1):11–20. doi: 10.1007/s12298-012-0139-1.
  • Amara S, Abdelmelek H, Garrel C, et al. Preventive effect of zinc against cadmium-induced oxidative stress in the rat testis. J Reprod Dev. 2008;54(2):129–134. doi: 10.1262/jrd.18110.
  • Morshedi R, Ahmadizadeh M, Angali KA. Protective effects of zinc supplementation on renal toxicity in rats exposed to cadmium. Jundishapur J Health Sci. 2014;6(3):e21717. doi: 10.5812/jjhs.21717.
  • Soussi A, Gargouri M, El Feki A. Effects of co-exposure to lead and zinc on redox status, kidney variables, and histopathology in adult albino rats. Toxicol Ind Health. 2018;34(7):469–480. doi: 10.1177/0748233718770293.
  • Hamed MA, Akhigbe RE, Aremu AO, et al. Zinc normalizes hepatic lipid handling via modulation of ADA/XO/UA pathway and caspase 3 signaling in highly active antiretroviral therapy-treated wistar rats. Chem Biol Interact. 2022;368:110233. doi: 10.1016/j.cbi.2022.110233.
  • Maremanda KP, Khan S, Jena G. Zinc protects cyclophosphamide-induced testicular damage in rat: involvement of metallothionein, tesmin and Nrf2. Biochem Biophys Res Commun. 2014;445(3):591–596. doi: 10.1016/j.bbrc.2014.02.055.
  • Chasapis CT, Loutsidou AC, Spiliopoulou CA, et al. Zinc and human health: an update. Arch Toxicol. 2012;86(4):521–534. doi: 10.1007/s00204-011-0775-1.
  • Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Intervent Aging. 2007;2(2):219–236.
  • Yamaguchi M, Weitzmann MN. Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol Cell Biochem. 2011;355(1-2):179–186. doi: 10.1007/s11010-011-0852-z.
  • Lu WP, Mei XT, Wang Y, et al. Zn(II)-curcumin protects against oxidative stress, deleterious changes in sperm parameters and histological alterations in a male mouse model of cyclophosphamide-induced reproductive damage. Environ Toxicol Pharmacol. 2015;39(2):515–524. doi: 10.1016/j.etap.2014.12.014.
  • Maremanda KP, Jena GB. Methotrexate-induced germ cell toxicity and the important role of zinc and SOD1: investigation of molecular mechanisms. Biochem Biophys Res Commun. 2017;483(1):596–601. doi: 10.1016/j.bbrc.2016.12.098.
  • Kelainy EG, Laila IM, Ibrahim SR. The effect of ferulic acid against lead-induced oxidative stress and DNA damage in kidney and testes of rats. Environ Sci Pollut Res Int. 2019;26(31):31675–31684. doi: 10.1007/s11356-019-06099-6.
  • Vukelić D, Djordjevic AB, Anđelković M, et al. Derivation of benchmark doses for male reproductive toxicity in a subacute low-levl Pb exposure model in rats. Toxicol Lett. 2023;375:69–76. doi: 10.1016/j.toxlet.2023.01.001.
  • Zhang Z, Yu J, Xie J, et al. Improvement roles of zinc supplementation in low dose lead-induced testicular damage and glycolytic inhibition in mice. Toxicology. 2021;462:152933. doi: 10.1016/j.tox.2021.152933.
  • Ajayi AF, Akhigbe RE. Codeine induced sperm DNA damage is mediated predominantly by oxidative stress rather than apoptosis. Redox Rep. 2020;25(1):33–40. doi: 10.1080/13510002.2020.1752003.
  • Mathias FT, Romano RM, Kizys MM, et al. Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproductive parameters. Nanotoxicology. 2015;9(1):64–70. doi: 10.3109/17435390.2014.889237.
  • Robb G, Amann R, Killian G. Daily sperm production and epididymal sperm reserves of pubertal and adult rats. J Reprod Fertil. 1978;54(1):103–107. doi: 10.1530/jrf.0.0540103.
  • Talalay P. Enzymatic analysis of steroid hormone methods. Biochem Anal. 1960;8:119.
  • Jarabak J, Adams JA, Williams-Ashman HG, et al. Purification of a 17beta-hydroxysteroid dehydrogenase of human placenta and studies on its transhydrogenase function. J Biol Chem.;237:345-57. 1962;237(2):345–357. doi: 10.1016/S0021-9258(18)93926-8.
  • Fossati P, Prencipe L, Berti G. Use of 3, 5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem. 1980;26(2):227–231. doi: 10.1093/clinchem/26.2.227.
  • Saka WA, Ayoade TE, Akhigbe TM, et al. Moringa oleifera seed oil partially abrogates 2,3-dichlorovinyl dimethyl phosphate (dichlorvos)-induced cardiac injury in rats: evidence for the role of oxidative stress. J Basic Clin Physiol Pharmacol. 2020;32(3):237–246. doi: 10.1515/jbcpp-2019.0313.
  • Abdelzaher WY, Rofaeil RR, Ali DME, et al. Protective effect of dipeptidyl peptidase-4 inhibitors in testicular torion/detorsion in rats: a possible role of HIF-1α and nitric oxide, Naunyn-Schmeideberg’s arch. Pharmacol. 2020;393:603–614. doi: 10.1007/s00210-019-01765-5.
  • Afolabi OA, Anyogu DC, Hamed MA, et al. Glutamine prevents upregulation of NF-kB signaling and caspase 3 activation in ischaemia/reperfusion-induced testicular damage: an animal model. Biomed Pharmacother. 2022;150:113056. doi: 10.1016/j.biopha.2022.113056.
  • Cosentino MJ, Nishida M, Rabinowitz R, et al. Histological changes occurring in the contralateral testes of prepubertal rats subjected to various durations of unilateral spermatic cord torsion. J Urol. 1985;133(5):906–911. doi: 10.1016/S0022-5347(17)49278-0.
  • Johnsen SG. Testicular biopsy score count–a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormone Res Paediatr. 1970;1(1):2–25. doi: 10.1159/000178170.
  • Akhigbe RE, Hamed MA, Dutta S, et al. Influence of ejaculatory abstinence period on semen quality of 5165 normozoospermic and oligozoospermic Nigerian men: a retrospective study. Health Sci. Rep. 2022;5:e722.
  • Zegers-Hochschild F, Adamson GD, de Mouzon J, et al. International committee for monitoring assisted reproductive technology (ICMART) and the world health organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril. 2009;92(5):1520–1524. doi: 10.1016/j.fertnstert.2009.09.009.
  • Hassan E, Kahilo K, Kamal T, et al. The protective effect of epigallocatechin-3-gallate on testicular oxidative stress in lead-induced toxicity mediated by Cyp19 gene/estradiol level. Toxicology. 2019a;422:76–83. doi: 10.1016/j.tox.2019.04.015.
  • Xie J, Yu J, Fan Y, et al. Low dose lead exposure at the onset of puberty disrupts spermatogenesis- related gene expression and causes abnormal spermatogenesis in mouse. Toxicol Appl Pharmacol. 2020;393:114942. doi: 10.1016/j.taap.2020.114942.
  • Anjum MR, Reddy PS. Recovery of lead-induced suppressed reproduction in male rats by testosterone. Andrologia. 2015;47(5):560–567. doi: 10.1111/and.12303.
  • Hassan E, Kahilo K, Kamal T, et al. Protective effect of diallyl sulfide against lead-mediated oxidative damage, apoptosis and down-regulation of CYP 19 gene expression in rat testes. Life Sci. 2019b;226:193–201. doi: 10.1016/j.lfs.2019.04.020.
  • Marchlewicz M, Michalska T, Wiszniewska B. Detection of lead-induced oxidative stress in the rat epididymis by chemiluminescence. Chemosphere. 2004;57(10):1553–1562. doi: 10.1016/j.chemosphere.2004.08.102.
  • Akhigbe RE, Dutta S, Sengupta P, et al. Adropin in immune and energy balance: ‘a molecule of interest’ in male reproduction. Chem Biol Lett. 2021;8(4):213–223.
  • Oyedokun PA, Akhigbe RE, Ajayi LO, et al. Impact of hypoxia on male reproductive functions. Mol Cell Biochem. 2023;478(4):875–885. doi: 10.1007/s11010-022-04559-1.
  • Akhigbe RE. 2014. Discordant results in plant toxicity studies in Africa: attempt of standardization. In: Kuete Victor, editor. Toxicological survey of African medicinal plants. Elsevier, USA. p. 53–61.
  • Ajayi AF, Akhigbe RE. The physiology of male reproduction: Impact of drugs and their abuse on male fertility. Andrologia. 2020;52(9):e13672 10.1111/and.13672PMC: 32542870
  • Bhattacharyya S, Sinha K, Sil CP. Cytochrome P450s: mechanisms and biological implications in drug metabolism and its interaction with oxidative stress. Curr Drug Metab. 2014;15(7):719–742. doi: 10.2174/1389200215666141125121659.
  • Coumailleau P, Pellegrini E, Adrio F, et al. Aromatase, estrogen receptors and brain development in fish and amphibians. Biochim Biophys Acta. 2015;1849(2):152–162. doi: 10.1016/j.bbagrm.2014.07.002.
  • Li Z, Shen Y, Chen Y, et al. High uric acid inhibits cardiomyocyte viability through the ERK/P38 pathway via oxidative stress. Cell Physiol Biochem. 2018;45(3):1156–1164. doi: 10.1159/000487356.
  • Matsukawa A, Yoshimura T, Maeda T, et al. Analysis of the cytokine network among tumor necrosis factor alpha, interleukin-1beta, interleukin-8, and interleukin-1 receptor antagonist in monosodium urate crystalinduced rabbit arthritis. Lab Invest. 1998;78(5):559–569.
  • Meng ZH, Hudson AP, Schumacher HR, Jr., et al. Monosodium urate, hydroxyapatite, and calcium pyrophosphate crystals induce tumor necrosis factor-alpha expression in a mononuclear cell line. J Rheumatol. 1997;24(12):2385- 8.
  • Braga TT, Forni MF, Correa-Costa M, et al. Soluble uric acid activates the NLRP3 inflammasome. Sci Rep. 2017;7:39884. doi: 10.1038/srep39884.
  • Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157(5):1013–1022. doi: 10.1016/j.cell.2014.04.007.
  • Chinnaiyan AM, Tepper CG, Seldin MF, et al. FADD/MORT1 is a common mediator of CD95 (fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem. 1996;271(9):4961–4965. doi: 10.1074/jbc.271.9.4961.
  • Coppola S, Ghibelli L. GSH extrusion and mitochondrial pathway of apoptotic signaling. Biochem Soc Trans. 2000;28(2):56–61. doi: 10.1042/bst0280056.
  • Green DR, Reed C. Mitochondria and apoptosis. Science. 1998;281(5381):1309–1312. doi: 10.1126/science.281.5381.1309.
  • Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the fas pathway of apoptosis. Cell. 1998;94(4):491–501. doi: 10.1016/s0092-8674(00)81590-1.
  • Luo X, Budihardjo I, Zou C, et al. Bid, a bcl2 interacting protein, mediates cytochrome c realese from mitochoncdria in response to activation of cell surface death receptors. Cell. 1998;94(4):481–490. doi: 10.1016/s0092-8674(00)81589-5.
  • Sun Q, Zhong W, Zhang W, et al. Zinc deficiency mediates alcohol-induced apoptotic cell death in the liver of rats through activating ER and mitochondrial cell death pathways. Am J Physiol Gastrointest Liver Physiol. 2015;308(9):G757–G766. doi: 10.1152/ajpgi.00442.2014.
  • Sahu C, Dwivedi DK, Jena GB. Zinc and selenium combination treatment protected diabetes-induced testicular and epididymal damage in rat. Hum Exp Toxicol. 2020;39(9):1235–1256. doi: 10.1177/0960327120914963.
  • Fadl AM, Abdelnaby EA, El‐Sherbiny HR. Supplemental dietary zinc sulphate and folic acid combination improves testicular volume and haemodynamics, testosterone levels and semen quality in rams under heat stress conditions. Reprod Domest Anim. 2022;57(6):567–576. doi: 10.1111/rda.14096.
  • Santos HO, Teixeira FJ. Use of medicinal doses of zinc as a safe and efficient coadjutant in the treatment of male hypogonadism. Aging Male. 2020;23(5):669–678. doi: 10.1080/13685538.2019.1573220.
  • Akhigbe RE, Hamed MA, Odetayo AF, et al. Zinc improves sexual and erectile function in HAART-treated rats via the upregulation of erectogenic enzymes and maintenance of redox balance. Aging Male. 2023;26(1):2205517. doi: 10.1080/13685538.2023.2205517.