21
Views
3
CrossRef citations to date
0
Altmetric
Original article

Immunogenicity and protective effect of recombinant enolase of Candidaalbicans in a murine model of systemic candidiasis

, , , &
Pages 319-324 | Received 20 Sep 2002, Accepted 10 Mar 2003, Published online: 09 Jul 2009

References

  • Imam N, Carpenter CC, Mayer KH, Fisher A, Stein M, Danforth SB. Hierarchical pattern of mucosal Candida infections in HIV-seropositive women. Am J Med 1990; 89: 142–146.
  • Klein RS, Harris CA, Small CB, Moll B, Lesser M, Friedland GH. Oral candidiasis in high-risk patients as the initial manifesta-tion of the acquired immunodeficiency syndrome. N Engl J Med 1984; 311: 354–358.
  • Odds FC. Candida and Candidosis, 2nd edn. London: Baillere Tindall, 1988.
  • Gomez MJ, Torosantucci A, Quinti I, Testa U, Peschle C, Cassone A. Mannoprotein-induced anti-U937 cell cytotoxicity in periph-eral blood mononuclear cells from uninfected or HIV-infected subjects: role of interferon-gamma and tumor necrosis factor-alpha. Cell Immunol 1993; 152: 530–543.
  • Hazen KC, Glee PM. Hydrophobic cell wall protein glycosylation by the pathogenic fungus Candida albicans. Can J Microbiol 1994; 40: 266–272.
  • Cassone A. Cell wall of Candida albicans: its functions and its impact on the host. Curr Top Med Mycol 1989; 3: 248–314.
  • Elorza MV, Murgui A, Sentandreu R. Dimorphism in Candida albicans: contribution of mannoproteins to the architecture of yeast and mycelial cell walls. J Gen Microbiol 1985; 131: 2209–2216.
  • Shepherd MG, Poulter RT, Sullivan PA. Candida albicans: biology, genetics, and pathogenicity. Annu Rev Microbiol 1985; 39: 579–614.
  • Kalo A, Segal E, Sahar E, Dayan D. Interaction of Candida albicans with genital mucosal surfaces: involvement of fibronectin in adherence. J Infect Dis 1988; 157: 1253–1256.
  • Klotz SA, Smith RL. A fibronectin receptor on Candida albicans mediates adherence of the fungus to extracellular matrix. J Infect Dis 1991; 163: 604–610.
  • Lopez-Ribot JL, Casanova M, Monteagudo C, Sepulveda P, Martinez JP. Evidence for the presence of a high-affinity laminin receptor-like molecule on the surface of Candida albicans yeast cells. Infect Immun 1994; 62: 742–746.
  • Bouali A, Robert R, Tronchin G, Senet JM. Characterization of binding of human fibrinogen to the surface of germ- tubes and mycelium of Candida albicans. J Gen Microbiol 1987; 133: 545–551.
  • Calderone RA, Linehan L, Wadsworth E, Sandberg AL. Identi-fication of C3d receptors on Candida albicans. Infect Immun 1988; 56: 252–258.
  • Bouchara JP, Tronchin G, Annaix V, Robert R, Senet JM. Laminin receptors on Candida albicans germ tubes. Infect Immun 1990; 58: 48–54.
  • Angiolella L, Facchin M, Stringaro A, Maras B, Simonetti N, Cassone A. Identification of a glucan-associated enolase as a main cell wall protein of Candida albicans and an indirect target of lipopeptide antimycotics. J Infect Dis 1996; 173: 684–690.
  • Lopez-Ribot JL, Alloush HM, Masten BJ, Chaffin WL. Evidence for presence in the cell wall of Candida albicans of a protein related to the hsp70 family. Infect Immun 1996; 64: 3333–3340.
  • Franklyn KM, Warmington JR, Ott AK, Ashman RB. An immunodominant antigen of Candida albicans shows homology to the enzyme enolase. Immunol Cell Biol 1990; 68: 173–178.
  • Bromuro C, La Valle R, Sandini S, et al. A 70-kilodalton recombinant heat shock protein of Candida albicans is highly immunogenic and enhances systemic murine candidiasis. Infect Immun 1998; 66: 2154–2162.
  • Walsh TJ, Hathorn JW, Sobel JD, et al. Detection of circulating Candida enolase by immunoassay in patients with cancer and invasive candidiasis. N Engl J Med 1991; 324: 1026–1031.
  • Sundstrom P, Aliaga GR. Molecular cloning of cDNA and analysis of protein secondary structure of Candida albicans enolase, an abundant, immunodominant glycolytic enzyme. J Bacteriol 1992; 174: 6789–6799.
  • Ito K, Ishiguro A, Kanbe T, Tanaka K, Toni S. Detection of IgE antibody against Candida albicans enolase and its cross-reactivity to Saccharomyces cerevisiae enolase. Clin Exp Allergy 1995; 25: 522–528.
  • Ito K, Ishiguro A, Kanbe T, Tanaka K, Toni S. Characterization of IgE-binding epitopes on Candida albicans enolase. Clin Exp Allergy 1995; 25: 529–535.
  • Ishiguro A, Homma M, Toni S, Tanaka K. Identification of Candida albicans antigens reactive with immunoglobulin E anti-body of human sera. Infect Immun 1992; 60: 1550–1557.
  • Sundstrom P, Jensen J, Balish E. Humoral and cellular immune responses to enolase after alimentary tract colonization or intravenous immunization with Candida albicans. J Infect Dis 1994; 170: 390–395.
  • Sandini S, Melchionna R, Arancia S, Gomez MJ, La Valle R. Generation of a highly immunogenic recombinant enolase of the human opportunistic pathogen Candida albicans. Biotechnol Appl Biochem 1999; 29: 223–227.
  • Romani L, Mencacci A, Cenci E, et al. CD4+ subset expression in murine candidiasis. Th responses correlate directly with genetically determined susceptibility or vaccine-induced resis-tance. J Immunol 1993; 150: 925–931.
  • Cenci E, Romani L, Vecchiarelli A, Puccetti P, Bistoni F. Role of L3T4+ lymphocytes in protective immunity to systemic Candida albicans infection in mice. Infect Immun 1989; 57: 3581–3587.
  • Romani L, Mencacci A, Grohmann U, et al. Neutralizing antibody to interleukin 4 induces systemic protection and T helper type 1-associated immunity in murine candidiasis. J Exp Med 1992; 176: 19–25.
  • Romani L, Mocci S, Bietta C, Lanfaloni L, Puccetti P, Bistoni F. Thl and Th2 cytokine secretion patterns in murine candidiasis: association of Thl responses with acquired resistance. Infect Immun 1991; 59: 4647–4654.
  • Spaccapelo R, Romani L, Tonnetti L, et al. TGF-beta is important in determining the in vivo patterns of susceptibility or resistance in mice infected with Candida albicans. J Immunol 1995; 155: 1349–1360.
  • Mencacci A, Torosantucci A, Spaccapelo R, Romani L, Bistoni F, Cassone A. A mannoprotein constituent of Candida albicans that elicits different levels of delayed-type hypersensitivity, cytokine production, and anticandidal protection in mice. Infect Immun 1994; 62: 5353–5360.
  • La Valle R, Bromuro C, Ranucci L, Muller HM, Crisanti A, Cassone A. Molecular cloning and expression of a 70-kilodalton heat shock protein of Candida albicans. Infect Immun 1995; 63: 4039–4045.
  • Kitamura D, Roes J, Kuhn R, Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin-y chain gene. Nature 1991; 350: 423–426.
  • Romani L. Immunity to Candida albicans: Thl, Th2 cells and beyond. Curr Opin Microbiol 1999; 2: 363–367.
  • Mencacci A, Cenci E, Bacci A, Montagnoli C, Bistoni F, Romani L. Cytokines in candidiasis and aspergillosis. Curr Pharm Biotechnol 2000; 1: 235–251.
  • Djeu JY Cytokines and anti-fungal immunity. Adv Exp Med Biol 1992; 319: 217–223.
  • Johansson M, Lycke N. Immunological memory in B-cell-deficient mice conveys long-lasting protection against genital tract infection with Chlamydia trachomatis by rapid recruitment of T cells. Immunology 2001; 102: 199–208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.