8
Views
1
CrossRef citations to date
0
Altmetric
Review

Assessment of Candida albicans genes expressed during infections as a tool to understand pathogenesis

, &
Pages 293-304 | Published online: 09 Jul 2009

References

  • Casadevall A, Pirofski L. Host-pathogen interactions: the attri-butes of virulence. J Infect Dis 2001; 184: 337–344.
  • Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol 2001; 9: 327–335.
  • Edmond MB, Wallace SE, McClish DK, et al. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 1999; 29: 239–244.
  • Fidel PL Jr, Sobel JD. Immunopathogenesis of recurrent vulvo-vaginal candidiasis. Clin Microbiol Rev 1996; 9: 335–348.
  • Dar-Odeh NS, Shehabi AA. Oral candidosis in patients with removable dentures. Mycoses 2003; 46: 187–191.
  • Ferrazzini G, Kaiser RR, Hirsig Cheng SK, etal. Microbiological aspects of diaper dermatitis. Dermatology 2003; 206: 136–141.
  • Smith H. Questions about the behaviour of bacterial pathogens in vivo. Philos Trans R Soc Lond B Biol Sci 2000; 355: 551–564.
  • Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhauser J. Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci USA 2000; 97: 6102–6107.
  • Staib P, Kretschmar M, Nichterlein T, Kohler G, Morschhauser J. Expression of virulence genes in Candida albicans. Adv Exp Med Biol 2000; 485: 167–176.
  • Liu H. Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen. Int J Med Microbiol 2002; 292: 299–311.
  • Soli DR. Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. Bioessays 2004; 26: 10–20.
  • Zhao R, Lockhart SR, Daniels K, Soli DR. Roles of TUP1 in switching, phase maintenance, and phase-specific gene expression in Candida albicans. Eukaryot Cell 2002; 1: 353–365.
  • Lane S, Birse C, Zhou S, et al. DNA array studies demonstrate convergent regulation of virulence factors by Cphl, Cph2, and Efgl in Candida albicans. J Biol Chem 2001; 276: 48988–48996.
  • Mahan MJ, Slauch JM, Mekalanos JJ. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 1993; 259: 686–688.
  • Mahan MJ, Heithoff DM, Sinsheimer RL, Low DA. Assessment of bacterial pathogenesis by analysis of gene expression in the host. Annu Rev Genet 2000; 34: 139–164.
  • Heithoff DM, Sinsheimer RL, Low DA, Mahan MJ. In vivo gene expression and the adaptive response: from pathogenesis to vaccines and antimicrobials. Philos Trans R Soc Lond B Biol Sci 2000; 355: 633–642.
  • McKenney D, Pouliot KL, Wang Y, et al. Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 1999; 284: 1523–1527.
  • Heithoff DM, Sinsheimer RL, Low DA, Mahan MJ. An essential role for DNA adenine methylation in bacterial virulence. Science 1999; 284: 967–970.
  • Goldman WE. Looking for a few good mutants. Science 1999; 285: 539–541.
  • Cormack BP, Ghori N, Falkow S. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 1999; 285: 578–582.
  • Zhao XJ, Newsome JT, Cihlar RL. Up-regulation of two Candida albicans genes in the rat model of oral candidiasis detected by differential display. Microb Pathog 1998; 25: 121–129.
  • Naglik JR, Newport G, White TC, et al. In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun 1999; 67: 2482–2490.
  • Fradin C, Kretschmar M, Nichterlein T, et al. Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 2003; 47: 1523–1543.
  • Lorenz MC, Fink GR. The glyoxylate cycle is required for fungal virulence. Nature 2001; 412: 83–86.
  • Prigneau 0, Porta A, Poudrier JA, et al. Genes involved in beta-oxidation, energy metabolism and glyoxylate cycle are induced by Candida albicans during macrophage infection. Yeast 2003; 20: 723–730.
  • Cheng S, Clancy CJ, Checkley MA, et al. Identification of Candida albicans genes induced during thrush offers insight into pathogenesis. Mol Microbiol 2003; 48: 1275–1288.
  • Cheng S, Nguyen MH, Zhang Z, et al. Evaluation of the roles of four Candida albicans genes in virulence by using gene disruption strains that express URA3 from the native locus. Infect Immun 2003; 71: 6101–6103.
  • Hensel M, Shea JE, Gleeson C, et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 1995; 269: 400–403.
  • Mei JM, Nourbakhsh F, Ford CW, Holden DW. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol 1997; 26: 399–407.
  • Haynes K. Virulence in Candida species. Trends Microbiol 2001; 9: 591–596.
  • Uhl MA, Biery M, Craig N, Johnson AD. Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C. albicans. EMBO J 2003; 22: 2668–2678.
  • Lorenz MC, Fink GR. Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 2002; 1: 657–662.
  • Ponton J, Omaetxebarria MJ, Elguezabal N, Alvarez M, Mor-agues MD. Immunoreactivity of the fungal cell wall. Med Mycol 2001; 39\(Suppl. 1): 101–110.
  • Martinez JP, Gil ML, Lopez-Ribot JL, Chaffin WL. Serologic response to cell wall mannoproteins and proteins of Candida albicans. Clin Microbiol Rev 1998; 11: 121–141.
  • Matthews RC, Burnie JP, Tabaqchali S. Immunoblot analysis of the serological response in systemic candidosis. Lancet 1984; 2: 1415–1418.
  • Matthews R, Burnie J, Smith D, et al. Candida and AIDS: evidence for protective antibody. Lancet 1988; 2: 263–266.
  • Matthews R, Hodgetts S, Burnie J. Preliminary assessment of a human recombinant antibody fragment to hsp90 in murine invasive candidiasis. J Infect Dis 1995; 171: 1668–1671.
  • Matthews RC, Rigg G, Hodgetts S, et al. Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90. Antimicrob Agents Chemother 2003; 47: 2208–2216.
  • Swoboda RK, Bertram G, Hollander H, et al. Glycolytic enzymes of Candida albicans are nonubiquitous immunogens during candidiasis. Infect Immun 1993; 61: 4263–4271.
  • Sentandreu M, Elorza MV, Valentin E, Sentandreu R, Gozalbo D. Cloning of cDNAs coding for Candida albicans cell surface proteins. J Med Vet Mycol 1995; 33: 105–111.
  • Eroles P, Sentandreu M, Elorza MV, Sentandreu R. Cloning of a DNA fragment encoding part of a 70-kDa heat shock protein of Candida albicans. FEMS Microbiol Lett 1995; 128: 95–100.
  • Alloush HM, Lopez-Ribot JL, Chaffin WL. Dynamic expression of cell wall proteins of Candida albicans revealed by probes from cDNA clones. J Med Vet Mycol 1996; 34: 91–97.
  • Lopez-Ribot JL, Alloush HM, Masten BJ, Chaffin WL. Evidence for presence in the cell wall of Candida albicans of a protein related to the hsp70 family. Infect Immun 1996; 64: 3333–3340.
  • Alloush HM, Lopez-Ribot JL, Masten BJ, Chaffin WL. 3-phosphoglycerate kinase: a glycolytic enzyme protein present in the cell wall of Candida albicans. Microbiology 1997; 143: 321–330.
  • Gil-Navarro I, Gil ML, Casanova M, et al. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. J Bacteriol 1997; 179: 4992–4999.
  • Pitarch A, Pardo M, Jimenez A, et al. Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins. Electrophoresis 1999; 20: 1001–1010.
  • Pardo M, Ward M, Pitarch A, et al. Cross-species identification of novel Candida albicans immunogenic proteins by combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Electrophoresis 2000; 21: 2651–2659.
  • Pitarch A, Diez-Orejas R, Molero G, et al. Analysis of the serologic response to systemic Candida albicans infection in a murine model. Proteomics 2001; 1: 550–559.
  • Handfield M, Brady LJ, Progulske-Fox A, Hillman JD. IVIAT: a novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol 2000; 8: 336–339.
  • http://www-sequence.stanford.edu/group/candida. Sequencing of Candida albicans was accomplished with the support of the NIDR and the Burroughs Wellcome Fund.
  • Galar Fungail Consortium's Candida DB website set up by the Institut Pasteur (Paris, France) at http://genolist.pasteur.fr/ CandidaDB/.
  • http://www.ncbi.nlm.nih.gov/BLAST/
  • http://us.expasy.org/tools/blast/
  • Sequence data for Saccharomyces cerevisiae was obtained from the Stanford Genome Technology Center's Saccharomyces genome database at http://genome-www.stanford.edu/Saccharo myces/
  • http://protein.toulouse.inra.fr/prodom/current/html/home.php
  • http://pfam.wustl.edu/
  • Ishii N, Yamamoto M, Yoshihara F, Arisawa M, Aoki Y Biochemical and genetic characterization of Rbflp, a putative transcription factor of Candida albicans. Microbiology 1997; 143: 429–435.
  • Csank C, Makris C, Meloche S, et al. Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phospha-tase mutant of the human pathogen Candida albicans. Mol Biol Cell 1997; 8: 2539–2551.
  • Leberer E, Harcus D, Broadbent ID, et al. Signal transduction through homologs of the Ste2Op and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA 1996; 93: 13217–13222.
  • Kohler JR, Fink GR. Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci USA 1996; 93: 13223–13228.
  • Calera JA, Calderone R. Histidine kinase, two-component signal transduction proteins of Candida albicans and the pathogenesis of candidosis. Mycoses 1999; 42(Suppl. 2): 49–53.
  • Kruppa M, Goins T, Cutler JE, et al. The role of the Candida albicans histidine kinase (CHK1) gene in the regulation of cell wall mannan and glucan biosynthesis. FEMS Yeast Res 2003; 3: 289–299.
  • Bahn YS, Sundstrom P. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J Bacteriol 2001; 183: 3211–3223.
  • Bassilana M, Blyth J, Arkowitz RA. Cdc24, the GDP-GTP exchange factor for Cdc42, is required for invasive hyphal growth of Candida albicans. Eukaryot Cell 2003; 2: 9–18.
  • Forsberg H, Ljungdahl PO. Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr Genet 2001; 40: 91–109.
  • Gow NA, Brown AJ, Odds FC. Fungal morphogenesis and host invasion. Curr Opin Microbiol 2002; 5: 366–371.
  • Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. En-gineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2003; 2: 1053–1060.
  • Smith DG, Garcia-Pedrajas MD, Gold SE, Perlin MH. Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism. Mol Microbiol 2003; 50: 259–275.
  • Takagi H, Iwamoto F, Nakamori S. Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl Microbiol Biotechnol 1997; 47: 405–411.
  • Huang HL, Brandriss MC. The regulator of the yeast proline utilization pathway is differentially phosphorylated in response to the quality of the nitrogen source. Mol Cell Biol 2000; 20: 892–899.
  • Tripathi G, Wiltshire C, Macaskill S, et al. Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J 2002; 21: 5448–5456.
  • Wieland J, Nitsche AM, Strayle J, Steiner H, Rudolph HK. The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na + pump in the yeast plasma membrane. EMBO J 1995; 14: 3870–3882.
  • Prior C, Potier S, Souciet JL, Sychrova H. Characterization of the NHA 1 gene encoding a Na +/H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett 1996; 387: 89–93.
  • Chloupkova M, LeBard LS, Koeller DM. MDL1 is a high copy suppressor of ATM1: evidence for a role in resistance to oxidative stress. J Mol Biol 2003; 331: 155–165.
  • Bulawa CE, Miller DW, Henry LK, Becker JM. Attenuated virulence of chitin-deficient mutants of Candida albicans. Proc Natl Acad Sci U S A 1995; 92: 10570–10574.
  • Oberholzer U, Marcil A, Leberer E, Thomas DY, Whiteway M. Myosin I is required for hypha formation in Candida albicans. Eukaryot Cell 2002; 1: 213–228.
  • Sturtevant J, Dixon F, Wadsworth E, et al . Identification and cloning of GCA1, a gene that encodes a cell surface glucoamylase from Candida albicans. Med Mycol 1999; 37: 357–366.
  • Sentandreu M, Elorza MV, Sentandreu R, Fonzi WA. Cloning and characterization of PRA1, a gene encoding a novel pHregulated antigen of Candida albicans. J Bacteriol 1998; 180: 282–289.
  • Staab JF, Bradway SD, Fidel PL, Sundstrom P. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 1999; 283: 1535–1538.
  • Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 1998; 33: 451–459.
  • Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Differential expression of Candida albicans phospholipase B (PLB1) under various environmental and physiological conditions. Microbiology 2003; 149: 261–267.
  • Leidich SD, Ibrahim AS, Fu Y, et al . Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem 1998; 273: 26078–26086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.