26
Views
6
CrossRef citations to date
0
Altmetric
Original

Th1/Th2 in aspergillosis

Pages 229-235 | Published online: 09 Jul 2009

References

  • Hogaboam CM, Carpenter KJ, Schuh JM, Buckland KF. Aspergillus and asthma – any link?. Med Mycol 2005; 43(Suppl.1)S197–S202
  • Moss RB. Pathophysiology and immunology of allergic bronchpulmonary aspergillosis. Med Mycol 2005; 43(Suppl.1)S203–S206
  • Stevens DA, Moss RB, Kurup VP, et al. Allergic broncho-pulmonary aspergillosis in cystic fibrosis, state of the art: Cystic Fibrosis Foundation Consensus Conference. Clin Infect Dis 2003; 37((Suppl. 3)): S225–S264.
  • Schaffner A, Douglas H, Braude A. Selective protection against conidia by mononuclear and against mycelia by polymorphonuclear phagocytes in resistance to Aspergillus. Observations on these two lines of defense in vivo and in vitro with human and mouse phagocytes. J Clin Invest 1982; 69: 617–631
  • Roilides E, Blake C, Holmes A, Pizzo PA, Walsh TJ. Granulocyte-macrophage colony-stimulating factor and interferon-gamma prevent dexamethasone-induced immunosuppression of antifungal monocyte activity against Aspergillus fumigatus hyphae. J Med Vet Mycol 1996; 34: 63–69
  • Brummer E, Kamberi M, Stevens DA. Regulation by granulocyte-macrophage colony-stimulating factor and/or steroids given in vivo of proinflammatory cytokine and chemokine production by bronchoalveolar macrophages in response to Aspergillus fumigatus. J Infect Dis 2003; 187: 705–709
  • Brummer E, Maqbool A, Stevens DA. In vivo GM-CSF prevents dexamethasone suppression of killing of Aspergillus fumigatus conidia by bronchoalveolar macrophages. J Leukoc Biol 2001; 70: 868–872
  • Brummer E, Maqbool A, Stevens DA. Protection of peritoneal macrophages by granulocyte/macrophage colony-stimulating factor (GM-CSF) against dexamethasone suppression of killing of Aspergillus, and the effect of human GM-CSF. Microbes Infect 2002; 4: 133–138
  • Brummer E, Maqbool A, Stevens DA. Protection of bronchoalveolar macrophages by granulocyte-macrophage colony-stimulating factor against dexamethasone suppression of fungicidal activity for Aspergillus fumigatus conidia. Med Mycol 2001; 39: 509–515
  • Kamberi M, Brummer E, Stevens DA. Regulation of bronchoalveolar macrophage proinflammatory cytokine production by dexamethasone and granulocyte-macrophage colony-stimulating factor after stimulation by Aspergillus conidia and lipopolysaccharide. Cytokine 2002; 19: 14–20
  • Duong M, Ouellet N, Simard M, et al. Kinetic study of host defense and inflammatory response to Aspergillus fumigatus in steroid-induced immunosuppressed mice. J Infect Dis 1998; 178: 1472–1482
  • Mehrad B, Wiekowski M, Morrison BE, et al. Transient lung-specific expression of the chemokine KC improves outcome in invasive aspergillosis. Am J Respir Crit Care Med 2002; 166: 1263–1268
  • Morrison BE, Park SJ, Mooney JM, Mehrad B. Chemokine-mediated recruitment of NK cells is a critical host defense mechanism in invasive aspergillosis. J Clin Invest 2003; 112: 1862–1870
  • Mambula SS, San K, Henneke P, Golenbock DT, Levitz SM. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 2002; 277: 39320–39326
  • Meier A, Kirschning CJ, Nikolaus T, et al. Toll-like receptor (TLR)2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell Microbiol 2003; 5: 561–570
  • Netea MG, Warris A, Van der Meer JWM, et al. Aspergillus fumigatus evades immune recognition during germination through loss of Toll-like receptor-4-mediated signal transduction. J Infect Dis 2003; 188: 320–326
  • Bellocchio S, Montagnoli C, Bozza S, et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 2004; 172: 3059–3069
  • Bellocchio S, Moretti S, Perruccio K, et al. TLRs govern neutrophil activity in aspergillosis. J Immunol 2004; 173: 7406–7415
  • Bozza S, Gaziano R, Spreca A, et al. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J Immunol 2002; 168: 1362–1371
  • Romani L. Immunity to fungal infections. Nature Rev Immunol 2004; 4: 1–13
  • Netea MG, Van der Meer JWM, Sutmiller RP, Adema GJ, Kullberg B-J. From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrob Agents Chemother 2005; 49: 3991–3996
  • Rivera A, Van Epps HL, Hohl TM, Rizzuto G, Pamer EG. Distinct CD4+-T-cell responses to live and heat-inactivated Aspergillus fumigatus conidia. Infect Immun 2005; 73: 7170–7179
  • Montagnoli C, Fallarino F, Gaziano R, et al. Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism. J Immunol 2006; 176: 1712–1723
  • Cenci E, Perito S, Ensole K-H, et al. Th1 and Th2 cytokines in mice with invasive aspergillosis. Infect Immun 1997; 65: 564–570
  • Hebart H, Bollinger C, Fisch P, et al. Analysis of T-cell responses to Aspergillus fumigatus antigens in healthy individuals and patients with hematologic malignancies. Blood 2002; 100: 4521–4528
  • Bellocchio S, Bozza S, Montagnoli C, et al. Immunity to Aspergillus fumigatus: the basis for immunotherapy and vaccination. Med Mycol 2005; 43(Suppl. 1)S181–S188
  • Roilides E, Uhlig K, Venzon D, Pizzo PA, Walsh TJ. Prevention of corticosteroid-induced suppression of human polymorphonuclear leukocyte-induced damage of Aspergillus fumigatus hyphae by granulocyte colony-stimulating factor and interferon-γ. Infect Immun 1993; 61: 4870–4877
  • Nagai H, Guo J, Choi H, Kurup V. Interferon-γ and tumor necrosis factor-α protect mice from invasive aspergillosis. J Infect Dis 1995; 172: 1554–1560
  • Grazziutti ML, Rex JH, Cowart RE, et al. Aspergillus fumigatus conidia induce a Th1-type cytokine response. J Infect Dis 1997; 176: 1579–1583
  • Roilides E, Katsifu H, Walsh TJ. Pulmonary host defenses against Aspergillus fumigatus. Res Immunol 1998; 149: 454–465
  • Schelenz S, Smith DA, Bancroft GJ. Cytokine and chemokine responses following pulmonary challenge with Aspergillus fumigatus: obligatory role of TNF-α and GM-CSF in neutrophil recruitment. Med Mycol 1999; 37: 183–194
  • Mehrad B, Striefer RM, Standiford TJ. Role of TNF-α in pulmomary host defense in murine invasive aspergillosis. J Immunol 1999; 162: 1633–1640
  • Brieland JK, Jackson C, Menzel F, et al. Cytokine networking in lungs of immunocompetent mice in response to inhaled Aspergillus fumigatus. Infect Immun 2001; 69: 1554–1560
  • Phadke AP, Mehrad B. Cytokines in host defense against Aspergillus: recent advances. Med Mycol 2005; 43(Suppl. 1)S173–S176
  • Warris A, Netea MG, Verweij PE, et al. Cytokine responses and regulation of interferon-gamma release by human mononuclear cells to Aspergillus fumigatus and other filamentous fungi. Med Mycol 2005; 43: 613–621
  • Cenci E, Mencacci A, Del Sero G, et al. Interleukin-4 causes susceptibility to invasive pulmonary aspergillosis through suppression of protective type 1 responses. J Infect Dis 1999; 180: 1957–1968
  • Taramelli D, Malabarba MG, Sala G, Basilico N, Cocuzza G. Production of cytokines by alveolar and peritoneal macrophages stimulated by Aspergillus fumigatus conidia or hyphae. J Med Vet Mycol 1996; 34: 49–56
  • Bozza S, Peruccio K, Montagnoli C, et al. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood 2003; 102: 3807–3814
  • Williams DM, Wiener MH, Drutz DJ. Immunologic studies of disseminated infection with Aspergillus fumigatus in the nude mouse. J Infect Dis 1981; 143: 726–733
  • Cenci E, Mencacci A, Fe d'Ostiani C, et al. Cytokine- and T helper-dependent lung mucosal immunity in mice with invasive pulmonary aspergillosis. J Infect Dis 1998; 178: 1750–1760
  • Cenci E, Mencacci A, Fe d'Ostiani C, et al. Cytokine- and T-helper dependent immunity in murine aspergillosis. Res Immunol 1998; 149: 445–454
  • Khatami S, Brummer E, Stevens DA. Effects of granulocyte-macrophage colony stimulating factor (GM-CSF) in vivo on cytokine production and proliferation by spleen cells. Clin Exp Immunol 2001; 125: 198–201
  • Choi J-H, Brummer E, Kang YJ, Jones PP, Stevens DA. IkB and NFkB in GM-CSF antagonism of dexamethasone suppression of macrophage response to Aspergillus fumigatus conidia. J Infect Dis 2006; 193: 1023–1028
  • Clemons KV, Calich VLG, Burger E, et al. Pathogenesis I: interaction of host cells and fungi. Med Mycol 2000; 38(Suppl. 1)99–111
  • Clemons KV, Grunig G, Sobel RA, et al. Role of IL-10 in invasive aspergillosis: increased resistance of IL-10 gene knockout mice to lethal systemic aspergillosis. Clin Exp Immunol 2000; 122: 186–191
  • Roilides E, Sein T, Roden M, Schaufele RL, Walsh TJ. Elevated serum concentrations of IL-10 in non-neutropenic patients with invasive aspergillosis. J Infect Dis 2001; 183: 518–520
  • Balloy V, Huerre M, Latgé J-P, Chignard M. Differences in patterns of infection and inflammation for corticosteroid treatment and chemotherapy in experimental invasive pulmonary aspergillosis. Infect Immun 2005; 73: 494–503
  • Stevens DA. Combination immunotherapy and antifungal chemotherapy. Clin Infect Dis 1998; 26: 1266–1269
  • Stevens DA, Kullberg BJ, Brummer E, et al. Combined treatment: antifungal drugs with antibodies, cytokines or drugs. Med Mycol 2000; 38(Suppl. 1)305–315
  • Saxena S, Bhatnagar PK, Ghosh PC, Usha Sharma P. Effect of amphotericin B lipid formulation on immune response in aspergillosis. Int J Pharmaceut 1999; 188: 19–30
  • Bellocchio S, Gaziano R, Bozza S, et al. Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor signalling from TLR-2 to TLR-4. J Antimicrob Chemother 2005; 55: 214–222
  • Polak-Wyss A. Protective effect of human granulocyte colony-stimulating factor (hGCSF) on Cryptococcus and Aspergillus infections in normal and immunosuppressed mice. Mycoses 1991; 34: 205–215
  • Liles WC, Huang JE, van Burik JH, Bowden RA, Dale DC. Granulocyte colony-stimulating factor administered in vivo augments neutrophil-mediated activity against opportunistic fungal pathogens. J Infect Dis 1997; 175: 1012–1015
  • Geller RB. Use of cytokines in the treatment of acute myelocytic leukemia: a critical review. J Clin Oncol 1996; 14: 1371–1382
  • Roilides E, Holmes A, Blake C, Venzon D, Pizzo PA, Walsh TJ. Antifungal activity of elutriated human monocytes against Aspergillus fumigatus hyphae: enhancement by granulocyte-macrophage colony stimulating factor and interferon-gamma. J Infect Dis 1994; 170: 894–899
  • Nemunaitis J. Use of macrophage colony-stimulating factor in the treatment of fungal infections. Clin Infect Dis 1998; 26: 1279–1281
  • Abu Jawdeh L, Haidar R, Bitar F, et al. Aspergillus vertebral osteomyelitis in a child with a primary monocyte killing defect: response to GM-CSF therapy. J Infect 2000; 41: 97–100
  • Bodey GP. The potential role of granulocyte-macrophage colony stimulating factor in therapy of fungal infections: a commentary. Eur J Clin Microbiol Infect Dis 1994; 13: 363–366
  • Boots RJ, Paterson DL, Allworth AM, Faoagali JL. Successful treatment of postinfluenza pseudomembranous necrotising bronchial aspergillosis with liposomal amphotericin, inhaled amphotericin B, gamma interferon and GM-CSF. Thorax 1999; 54: 1047–1049
  • Rowe JM, Andersen JW, Maza J, et al. A randomized, placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (>55 to 70 years of age) with acute myelogenous leukemia: a study of the Eastern Cooperative Oncology Group (E1490). Blood 1995; 86: 457–462
  • Bodey GP, Anaissie E, Gutterman J, Vadhan-Raj S. Role of granulocyte macrophage colony-stimulating factor as adjuvant therapy for fungal infections in patients with cancer. Clin Infect Dis 1993; 17: 705–707
  • Gonzalez CE, Lyman CA, Lee S, et al. Recombinant human macrophage colony-stimulating factor augments pulmonary host defenses against Aspergillus fumigatus. Cytokine 2001; 15: 87–95
  • Nemunaitis J, Meyers JD, Buckner CD, et al. Phase I trial of recombinant human macrophage colony-stimulating factor (rhM-CSF) in patients with invasive fungal infections. Blood 1991; 78: 907–913
  • Albelda SM, Talbot GH, Gerson ST, et al. Pulmonary cavitation and massive hemoptysis in invasive pulmonary aspergillosis. Influence of bone marrow recovery in patients with acute leukemia. Am Rev Respir Dis 1985; 131: 115–120
  • Groll A, Renz S, Gerein V, Schwabe D, Katschan G, Schneider M, Hubner K, Kornhuber B. Fatal haemoptysis associated with invasive pulmonary aspergillosis treated with high-dose amphotericin B and granulocyte–macrophage colony-stimulating factor (GM-CSF). Mycoses 1992; 35: 67–75
  • Roilides E, Dimitriadou-Georgiadu A, Sein T, Kadiltsoglou I, Walsh TJ. Tumor necrosis factor alpha enhances antifungal activities of polymorphonuclear and mononuclear phagocytes against Aspergillus fumigatus. Infect Immun 1998; 66: 5999–6003
  • Rodriguez-Adrian LJ, Grazziutti ML, Rex JH, Anaissie EJ. The potential role of cytokine therapy for fungal infections in patients with cancer: is recovery from neutropenia all that is needed?. Clin Infect Dis 1998; 26: 1270–1278
  • Saulsbury FT. Successful treatment of Aspergillus brain abscess with itraconazole and interferon-gamma in a patient with chronic granulomatous disease. Clin Infect Dis 2001; 32: 137–139
  • Bernhisel-Broadbent J, Camargo EE, Jaffe HS, Lederman HM. Recombinant human interferon-gamma as adjunct therapy for Aspergillus infection in a patient with chronic granulomatous disease. J Infect Dis 1991; 163: 908–911
  • Vora S, Chauhan S, Brummer E, Stevens DA. Activity of voriconazole combined with neutrophils or monocytes against Aspergillus fumigatus: Effects of granulocyte colony stimulating factor and granulocyte-macrophage colony-stimulating factor. Antimicrob Agents Chemother 1998; 42: 2299–2303
  • Graybill JR, Bocanegra R, Najvar LK, Loebenberg D, Luther MF. Granulocyte colony-stimulating factor and azole antifungal therapy in murine aspergillosis: role of immune suppression. Antimicrob Agents Chemother 1998; 42: 2467–2473

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.