157
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family – a sticky pursuit

, , &
Pages 1-15 | Received 12 Jan 2007, Published online: 09 Jul 2009

References

  • Hoyer LL, Scherer S., Shatzman AR, Livi GP. Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol 1995; 15: 39–54
  • Hoyer LL. The ALS gene family of Candida albicans. Trends Microbiol 2001; 9: 176–180
  • Rauceo JM, De Armond R, Otoo H, et al. Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p. Eukaryot Cell 2006; 5: 1664–1673
  • Hoyer LL, Payne TL, Hecht JE. Identification of Candida albicans ALS2 and ALS4 and localization of Als proteins to the fungal cell surface. J Bacteriol 1998b; 180: 5334–5343
  • Hoyer LL, Clevenger J, Hecht JE, Ehrhart EJ, Poulet FM. Detection of Als proteins on the cell wall of Candida albicans in murine tissues. Infect Immun 1999; 67: 4251–4255
  • Fu Y, Ibrahim AS, Sheppard DC, et al. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol 2002; 44: 61–72
  • Zhao X, Daniels K, Green CB, et al. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 2006; 152: 2287–2299
  • Zhao X, Oh S-H, Cheng G, et al. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin: functional comparison between Als3p and Als1p. Microbiology 2004; 150: 2415–2428
  • Zhao X, Pujol C, Soll DR, Hoyer LL. Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology 2003; 149: 2947–2960
  • Zhao X, Oh S-H, Hoyer LL. Unequal contribution of ALS9 alleles to adhesion between Candida albicans and vascular endothelial cells. Microbiology 2007; in press.
  • Braun BR, van het Hoog M, d'Enfert C, et al. A human-curated annotation of the Candida albicans genome. PLoS Genetics 2005; 1: 36–57
  • Zhao X, Oh S-H, Coleman DA, Kuhlenschmidt MS, Hoyer LL. ALS1 deletion reduces Candida albicans cell size: correlations between cell size, delayed filamentation and delayed virulence of the mutant strain. ( Unpublished data).
  • Gaur NK, Klotz SA. Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 1997; 65: 5289–5294
  • Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 1998; 33: 451–459
  • Chen X, Wang Q, Chen JY. Cloning and identification of genes related with morphogenesis of Candida albicans. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao 2000; 32: 509–515
  • Chen X, Chen JY. Cloning and functional analysis of ALS family genes from Candida albicans. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao 2000; 32: 586–594
  • Hoyer LL, Hecht JE. The ALS6 and ALS7 genes of Candida albicans. Yeast 2000; 16: 847–855
  • Hoyer LL, Hecht JE. The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast 2001; 18: 49–60
  • Zhao X, Oh S-H, Yeater KM, Hoyer LL. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 2005; 151: 1619–1630
  • van het Hoog M, Rast TJ, Martchenko M, et al. Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol 2007; 8: R52
  • Green CB, Cheng G, Chandra J, et al. RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 2004; 150: 267–275
  • Green CB, Zhao X, Yeater KM, Hoyer LL. Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology 2005; 151: 1051–1060
  • Sundstrom P. Adhesion in Candida spp. Cell Microbiol 2002; 4: 461–469
  • De Groot PWJ, Hellingwerf KJ, Klis FM. Genome-wide identification of fungal GPI proteins. Yeast 2003; 20: 781–796
  • Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 2004; 337: 243–253
  • Weig M, Jansch L, Gro( U, et al. Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata. Microbiology 2004; 150: 3129–3144
  • Hoyer LL, Fundyga R, Hecht JE, et al. Characterization of agglutinin-like sequence genes from non-C. albicans Candida and phylogenetic analysis of the ALS family. Genetics 2001; 157: 1555–1567
  • Moran G, Stokes C, Thewes S, et al. Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology 2004; 150: 3363–3382
  • Caro LHP, Tettelin H, Vossen JH, et al. In silico identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 1997; 13: 1477–1489
  • Lipke PN, Wojciechowicz D, Kurjan J. AGα1 is the structural gene for the Saccharomyces cerevisiae α-agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating. Mol Cell Biol 1989; 9: 3155–3165
  • Hauser K, Tanner W. Purification of the inducible α-agglutinin of S. cerevisiae and molecular cloning of the gene. FEBS Lett 1989; 225: 290–294
  • Lott TJ, Holloway BP, Logan DA, Fundyga R, Arnold J. Towards understanding the evolution of the human commensal yeast Candida albicans. Microbiology 1999; 145: 1137–1143
  • Zhang N, Harrex AL, Holland BR, et al. Sixty alleles of the ALS7 open reading frame in Candida albicans: ALS7 is a hypermutable contingency locus. Genome Res 2003; 13: 2005–2017
  • Zhao X, Oh S-H, Jajko R, , et al. Analysis of ALS5 and ALS6 allelic variability in a geographically diverse collection of Candida albicans isolates. Fungal Gent Biol 2007; in press.
  • Oh S-H, Cheng G, Nuessen JA, et al. Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 2005; 151: 673–681
  • Kapteyn JC, Hoyer LL, Hecht JE, et al. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 2000; 35: 601–611
  • Braun BR, Johnson AD. TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 2000; 155: 57–67
  • Chandra J, Kuhn DM, Mukherjee PK, et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 2001; 183: 5385–5394
  • Green CB, Marretta SM, Cheng G, et al. RT-PCR analysis of Candida albicans ALS gene expression in a hyposalivatory rat model of oral candidiasis and in HIV-positive human patients. Med Mycol 2006; 44: 103–111
  • Cheng G, Wozniak K, Wallig MA, et al. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun 2005; 73: 1656–1663
  • Green CB, Zhao X, Hoyer LL. Use of green fluorescent protein and reverse transcription-PCR to monitor Candida albicans agglutinin-like sequence gene expression in a murine model of disseminated candidiasis. Infect Immun 2005; 73: 1852–1855
  • Leng P, Lee PR, Wu H, Brown AJ. Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J Bacteriol 2001; 183: 4090–4093
  • Argimon S, Wishart JA, Leng R, et al. Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Euk Cell 2007; 6: 682–692
  • de Groot PW, de Boer AD, Cunningham J, et al. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 2004; 3: 955–965
  • Fu Y, Rieg G, Fonzi WA, et al. Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 1998; 66: 1783–1786
  • Santos MA, Tuite MF. The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res 1995; 23: 1481–1486
  • Herrero AB, Uccelletti D, Hirschberg CB, Dominguez A, Abeijon C. The Golgi GDPase of the fungal pathogen Candida albicans affects morphogenesis, glycosylation, and cell wall properties. Eukaryot Cell 2002; 1: 420–431
  • Selmecki A, Bergmann S, Berman J. Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol Microbiol 2005; 55: 1553–1565
  • Wellington M, Rustchenko E. 5-fluoro-orotic acid induces chromosome alterations in Candida albicans. Yeast 2005; 22: 57–70
  • Alberti-Segui C, Morales AJ, Xing H, et al. Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence. Yeast 2004; 21: 285–302
  • Gaur NK, Klotz SA, Henderson RL. Overexpression of the Candida albicans ALA1 gene in Saccharomyces cerevisiae results in aggregation following attachment of yeast cells to extracellular matrix proteins, adherence properties similar to those of Candida albicans. Infect Immun 1999; 67: 6040–6047
  • Klotz SA, Gaur NK, Lake DF, et al. Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p. Infect Immun 2004; 72: 2029–2034
  • Sheppard DC, Yeaman MR, Welch WH, et al. Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 2004; 279: 30480–30489
  • Zhao X, Oh S-H, Hoyer LL. Deletion of ALS5, ALS6, or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells. Med Mycol 2007; in press.
  • Sundstrom P. Adhesins in Candida albicans. Curr Opin Microbiol 1999; 2: 353–357
  • Mrsa V, Ecker M, Strahl-Bolsinger S, et al. Deletion of new covalently linked cell wall glycoproteins alters the electrophoretic mobility of phosphorylated wall components of Saccharomyces cerevisiae. J Bacteriol 1999; 181: 3076–3086
  • Phan QT, Myers CL, Fu Y, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 2007; 5: e64
  • Rauceo JM, Gaur NK, Lee KG, et al. Global cell surface conformational shift mediated by a Candida albicans adhesin. Infect Immun 2004; 72: 4948–4955
  • Gaur NK, Smith RL, Klotz SA. Candida albicans and Saccharomyces cerevisiae expressing ALA1/ALS5 adhere to accessible threonine, serine, or alanine patches. Cell Commun Adhes 2002; 9: 45–57
  • Gaur NK, Klotz SA. Accessibility of the peptide backbone of protein ligands is a key specificity determinant in Candida albicans SRS adherence. Microbiology 2004; 150: 277–284
  • Granger BL, Flenniken ML, Davis DA, Mitchell AP, Cutler JE. Yeast wall protein 1 of Candida albicans. Microbiology 2005; 151: 1631–1644
  • Martinez-Lopez RL, Monteoliva R, Diez-Orejas C, Nombela C, Gil C. The GPI-anchored protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in Candida albicans. Microbiology 2004; 150: 3341–3354
  • Garcia-Sanchez S, Aubert S. Iraqui I, et al. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 2004; 3: 536–545
  • O'Conner L, Lahiff S, Casey F, et al. Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridization probes on the LightCycler. Mol Cell Probes 2005; 19: 153–162
  • Nailis H, Coenye T, Van Nieuwerburgh F, Deforce D, Nelis HJ. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol 2006; 7: 25
  • Nobile CJ, Andes DR, Nett JF, et al. Critical role of Bcr1-dependent adhesions in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2006; 2: e63
  • Wojciechowicz D, Lu CF, Kurjan J, Lipke PN. Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein α-agglutinin, a member of the immunoglobulin superfamily. Mol Cell Biol 1993; 13: 2554–2563
  • Cappellaro C, Baldermann C, Rachel R, Tanner W. Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and α-agglutinin. EMBO J 1994; 13: 4737–4744
  • Chen M-H, Shen Z-M, Bobin S, Kahn PC, Lipke PN. Structure of Saccharomyces cerevisiae α-agglutinin. Evidence for a yeast cell wall protein with multiple immunoglobulin-like domains with atypical disulfides. J Biol Chem 1995; 270: 26168–26177
  • Grigorescu A, Chen M-H, Zhao H, Kahn P, Lipke PN. A CD2-based model of yeast α-agglutinin elucidates solution properties and binding characteristics. IUBMB Life 2000; 50: 105–113
  • Zhao H, Shen Z-M, Kahn PC, Lipke PM. Interaction of α-agglutinin and a-agglutinin, Saccharomyces cerevisiae sexual cell adhesion molecules. J Bacteriol 2001; 183: 2874–2880
  • Loza L, Fu Y, Ibrahim AS, et al. Functional analysis of the Candida albicans ALS1 gene product. Yeast 2004; 21: 473–482
  • Kamai Y, Kubota M, Kamai Y, et al. Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis. Infect Immun 2002; 9: 5256–5258
  • Chaffin WL, Sogin SJ. Germ tube formation from zonal rotor fractions of Candida albicans. J Bacteriol 1976; 126: 771–776
  • Jones T, Federspiel NA, Chibana H, et al. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 2004; 101: 7329–7334
  • Kaur R, Domergue R, Zupancic ML, Cormack BP. A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 2005; 8: 378–384
  • Ibrahim AS, Spellberg BJ, Avenissian V, et al. Vaccination with recombinant N-terminal domain of Als1p improves survival during murine disseminated candidiasis by enhancing cell-mediated, not humoral, immunity. Infect Immun 2005; 73: 999–1005
  • Spellberg BJ, Ibrahim AS, Avenissian V, et al. The anti-Candida albicans vaccine composed of the recombinant N terminus of Als1p reduces fungal burden and improves survival in both immunocompetent and immunocompromised mice. Infect Immun 2005; 73: 6191–6193
  • Ibrahim AS, Spellberg BJ, Avanesian V, et al. The anti-Candida vaccine based on the recombinant N-terminal domain of Als1p is broadly active against disseminated candidiasis. Infect Immun 2006; 74: 3039–3041
  • Spellberg BJ, Ibrahim AS, Avanesian V, et al. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis 2006; 194: 256–260
  • Johnson A. The biology of mating in Candida albicans. Nat Rev Microbiol 2003; 1: 106–116
  • Soll DR. Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. Bioessays 2004; 26: 10–20
  • Magee BB, Legrand M, Alarco AM, Raymond M, Magee PT. Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol Microbiol 2002; 46: 1345–1351

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.