29
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Upregulation of glyoxylate cycle genes upon Paracoccidioides brasiliensis internalization by murine macrophages and in vitro nutritional stress condition

, , , , &
Pages 125-134 | Received 13 May 2007, Published online: 09 Jul 2009

References

  • Restrepo A. The ecology of Paracoccidioides brasiliensis: a puzzle still unsolved. Sabouraudia 1985; 5: 323–334
  • Franco M. Host-parasite relationships in paracoccidioidomycosis. J Med Vet Mycol 1987; 1: 5–18
  • Restrepo A, McEwen JG, Castaneda E. The habitat of Paracoccidioides brasiliensis: how far from solving the riddle?. Med Mycol 2001; 3: 233–241
  • San-Blas G, Niño-Vega G, Iturriaga T. Paracoccidioides brasiliensis and paracoccidioidomycosis: molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics. Med Mycol 2002; 3: 225–242
  • Rooney PJ, Klein BS. Linking fungal morphogenesis with virulence. Cell Microbiol 2002; 3: 127–137
  • Franco M, Peracoli MT, Soares A, et al. Host-parasite relationship in paracoccidioidomycosis. Curr Top Med Mycol 1993; 5: 115–149
  • Casadevall A, Pirofski LA. Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection and disease. Infect Immun 2000; 12: 6511–6518
  • Calich VL, Kashino SS. Cytokines produced by susceptible and resistant mice in the course of Paracoccidioides brasiliensis infection. Braz J Med Biol Res 1998; 5: 615–623
  • Kashino SS, Fazioli RA, Cafalli-Favati C, et al. Resistance to Paracoccidioides brasiliensis infection is linked to a preferential Th1 immune response, whereas susceptibility is associated with absence of IFN-γ production. J Interf Cytok Res 2000; 20: 89–97
  • Marques-Mello L, Silva-Vergara ML, Rodrigues VJ. Patients with active infection with Paracoccidioides brasiliensis present a Th2 immune response characterized by high Interleukin-4 and Interleukin-5 production. Hum Immunol 2002; 2: 149–154
  • Brummer E, Hanson LH, Stevens DA. Gamma-interferon activation of macrophages for killing of Paracoccidioides brasiliensis and evidence for nonoxidative mechanisms. Int J Immunopharmacol 1988; 10: 945–952
  • Moscardi-Bacchi M, Brummer E, Stevens DA. Support of Paracoccidioides brasiliensis multiplication by human monocytes or macrophages: inhibition by activated phagocytes. J Med Microbiol 1994; 40: 159–164
  • Felipe MS, Andrade RV, Petrofeza SS, et al. Transcriptome characterization of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis by EST analysis. Yeast 2003; 20: 263–271
  • Felipe MS, Andrade RV, Arraes FB, et al. Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells. J Biol Chem 2005; 280: 24706–24714
  • Tavares AH, Silva SS, Bernardes VV, et al. Virulence insights from the Paracoccidioides brasiliensis transcriptome. Gen Mol Res 2005; 2: 358–371
  • Flavell RB, Woodward DO. Metabolic role, regulation of synthesis, cellular localization, and genetic control of the glyoxylate cycle enzymes in Neurospora crassa. J Bacteriol 1971; 1: 200–210
  • Fernandez E, Fernandez M, Moreno F, Rodicio R. Transcriptional regulation of the isocitrate lyase encoding gene in Saccharomyces cerevisiae. FEBS Lett 1993; 3: 238–242
  • Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 1997; 61: 136–169
  • Lorenz MC, Fink GR. Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryote Cell 2002; 1: 657–662
  • Graham JE, Clark-Curtiss JE. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci USA 1999; 96: 11554–11559
  • Lorenz MC, Fink GR. The glyoxylate cycle is required for fungal virulence. Nature 2001; 412: 83–86
  • Schnappinger D, Ehrt S, Voskuil MI, et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J Exp Med 2003; 198: 693–704
  • Barelle CJ, Priest CL, Maccallum DM, et al. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 2006; 6: 961–971
  • Fava-Neto C. Contribuição para o estudo imunológico da blastomicose de Lutz. Rev Inst Adolfo Lutz 1961; 21: 99–194
  • Tavares AH, Silva SS, Dantas A, et al. Early transcriptional response of Paracoccidioides brasiliensis upon internalization by murine macrophages. Microb Infect 2007; 9: 583–590
  • Restrepo A, Jiménez BE. Growth of Paracoccidioides brasiliensis yeast phase in a chemically defined culture medium. J Clin Microbiol 1980; 2: 279–281
  • Goihman-Yahr M, Pine L, Albornoz MC, et al. Studies on plating efficiency and estimation of viability of suspensions of Paracoccidioides brasiliensis yeast cells. Mycopathologia 1980; 2: 73–83
  • Silva-Pereira I, Bey F, Coux O, Scherrer K. Two mRNAs exist for the Hs PROS-30 gene encoding a component of human prosomes. Gene 1992; 2: 235–242
  • Venancio EJ, Daher BS, Andrade RV, et al. The kex2 gene from the dimorphic and human pathogenic fungus Paracoccidioides brasiliensis. Yeast 2002; 14: 1221–1231
  • da Silva SP, Borges-Walmsley MI, Pereira IS, et al. Differential expression of an hsp70 gene during transition from the mycelial to the infective yeast form of the human pathogenic fungus Paracoccidioides brasiliensis. Mol Microbiol 1999; 31: 1039–1050
  • Marone M, Mozzetti S, De Ritis D, Pierelli L, Scambia G. Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proc Online 2001; 3: 19–25
  • Nunes LR, Costa de Oliveira R, Leite DB, et al. Transcriptome analysis of Paracoccidioides brasiliensis cells undergoing mycelium-to-yeast transition. Eukaryot Cell 2005; 2: 2115–2128
  • Tabuchi T, Uchiyama H. Methylcitrate condensing and methylisocitrate cleaving enzymes: evidence for the pathway of oxidation of propionyl-CoA to pyruvate via C7-tricarboxylic acids. Agric Biol Chem 1975; 39: 2035–2042
  • Luttik MA, Kotter P, Salomons FA, et al. The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J Bacteriol 2000; 24: 7007–7013
  • Rude TH, Toffaletti DL, Cox GM, Perfect JR. Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans. Infect Immun 2002; 10: 5684–5694
  • Bentrup KHZ, Miczak A, Swenson DL, Russell DG. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J Bacteriol 1999; 23: 7161–7167
  • Muñoz-Elías E, McKinney JD. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vitro growth and virulence. Nature Med 2005; 6: 638–644
  • Cánovas D, Andrianopoulos A. Developmental regulation of the glyoxylate cycle in the human pathogen Penicillium marneffei. Mol Microbiol 2006; 6: 1725–1738
  • Schöler A, Schüller HJ. A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1994; 6: 3613–3622
  • Proft M, Grzesitza D, Entian KD. Identification and characterization of regulatory elements in the phosphoenolpyruvate carboxykinase gene PCK1 of Saccharomyces cerevisiae. Mol Gen Genet 1995; 3: 367–373
  • Caspary F, Hartig A, Schüller HJ. Constitutive and carbon source-responsive promoter elements are involved in the regulated expression of the Saccharomyces cerevisiae malate synthase gene MLS1. Mol Gen Genet 1997; 6: 619–627
  • Liu K, Yu J, Russel DG. pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology 2003; 149: 1829–1835
  • Hynes MJ, Draht OW, Davis MA. Regulation of the acuF gene, encoding phosphoenolpyruvate carboxykinase in the filamentous fungus Aspergillus nidulans. J Bacteriol 2002; 1: 183–190
  • Moore PA, Sagliocco FA, Wood RM, Brown AJ. Yeast glycolytic mRNAs are differentially regulated. Mol Cell Biol 1991; 10: 5330–5337
  • Netzer R, Krause M, Rittmann D, et al. Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Arch Microbiol 2004; 5: 354–363
  • Daran-Lapujade P, Jansen ML, Daran JM, et al. Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 2004; 10: 9125–9138
  • Liu P, Wood D, Nester EW. Phosphoenolpyruvate carboxykinase is an acid-induced, chromosomally encoded virulence factor in Agrobacterium tumefaciens. J Bacteriol 2005; 17: 6039–6045
  • Fradin C, Kretschmar M, Nichterlein T, et al. Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 2003; 6: 1523–1543

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.