288
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Cell mediated immunity to fungi: a reassessment

Pages 515-529 | Received 14 Nov 2007, Published online: 09 Jul 2009

References

  • Romani L. Overview of the fungal pathogens. Immunology of Infectious Diseases, SHE Kaufmann, A Sher, R Ahmed. ASM Press, Washington, DC 2001; 25–37
  • Simon-Nobbe B, Denk U, Poll V, Rid R, Breitenbach M. The spectrum of fungal allergy. Int Arch Allergy Immunol 2007; 145: 58–86
  • Denning DW, O'Driscoll BR, Hogaboam CM, Bowyer P, Niven RM. The link between fungi and severe asthma: a summary of the evidence. Eur Respir J 2006; 27: 615–626
  • Zeller S, Glaser AG, Vilhelmsson M, Rhyner C, Crameri R. Immunoglobulin-E-mediated reactivity to self antigens: A controversial issue. Int Arch Allergy Immunol 2007; 145: 87–93
  • Ashbee HR. Recent developments in the immunology and biology of Malassezia species. FEMS Immunol Med Microbiol 2006; 47: 14–23
  • Lilic D. New perspectives on the immunology of chronic mucocutaneous candidiasis. Curr Opin Infect Dis 2002; 15: 143–147
  • Crameri R, Faith A, Hemmann S, et al. Humoral and cell-mediated autoimmunity in allergy to Aspergillus fumigatus. J Exp Med 1996; 184: 265–270
  • Mayer C, Appenzeller U, Seelbach H, et al. Humoral and cell-mediated autoimmune reactions to human acidic ribosomal P2 protein in individuals sensitized to Aspergillus fumigatus P2 protein. J Exp Med 1999; 189: 1507–1512
  • Schmid-Grendelmeier P, Fluckiger S, Disch R, et al. IgE-mediated and T cell-mediated autoimmunity against manganese superoxide dismutase in atopic dermatitis. J Allergy Clin Immunol 2005; 115: 1068–1075
  • Romani L, Puccetti P. Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. Trends Microbiol 2006; 14: 183–189
  • Romani L, Puccetti P. Controlling pathogenic inflammation to fungi. Expert Rev Anti Infect Ther 2007; 5: 1007–1017
  • Miceli MH, Maertens J, Buve K, et al. Immune reconstitution inflammatory syndrome in cancer patients with pulmonary aspergillosis recovering from neutropenia: proof of principle, description, and clinical and research implications. Cancer 2007; 110: 112–120
  • Shelburne SA, 3rd, Darcourt J, White AC, Jr, et al. The role of immune reconstitution inflammatory syndrome in AIDS-related Cryptococcus neoformans disease in the era of highly active antiretroviral therapy. Clin Infect Dis 2005; 40: 1049–1052
  • Singh N, Perfect JR. Immune reconstitution syndrome associated with opportunistic mycoses. Lancet Infect Dis 2007; 7: 395–401
  • Thompson GR 3rd, LaValle CE 3rd, Everett ED. Unusual manifestations of histoplasmosis. Diagn Microbiol Infect Dis 2004; 50: 33–41
  • Haas-Stapleton EJ, Lu Y, Hong S, et al. Candida albicans modulates host defense by biosynthesizing the pro-resolving mediator resolvin E1. PLoS ONE 2007; 2: e1316
  • Wheeler RT, Fink GR. A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2006; 2: e35
  • Dupont B. Hepatosplenic candidiasis: a new immune recostitution inflammatory syndrome?. J Med Mycol 2007; 17: 155–156
  • Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB. Inflammatory response and clinical course of adult patients with nosocomial bloodstream infections caused by Candida spp. Clin Microbiol Infect 2006; 12: 170–177
  • Ortega M, Rovira M, Filella X, et al. Prospective evaluation of procalcitonin in adults with non-neutropenic fever after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2006; 37: 499–502
  • Schubert MS. Allergic fungal sinusitis. Clin Rev Allergy Immunol 2006; 30: 205–216
  • Assari T. Chronic granulomatous disease; fundamental stages in our understanding of CGD. Med Immunol 2006; 5: 4
  • Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 2000; 79: 170–200
  • Rempe S, Sachdev MS, Bhakta R, et al. Coccidioides immitis fungemia: clinical features and survival in 33 adult patients. Heart Lung 2007; 36: 64–71
  • Corvino CL, Mamoni RL, Fagundes GZ, Blotta MH. Serum interleukin-18 and soluble tumour necrosis factor receptor 2 are associated with disease severity in patients with paracoccidioidomycosis. Clin Exp Immunol 2007; 147: 483–490
  • Romani L. Immunity to fungal infections. Nat Rev Immunol 2004; 4: 1–23
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124: 783–801
  • Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 2006; 6: 33–43
  • Filler SG. Candida-host cell receptor-ligand interactions. Curr Opin Microbiol 2006; 9: 333–339
  • Hohl TM, Rivera A, Pamer EG. Immunity to fungi. Curr Opin Immunol 2006; 18: 465–472
  • Netea MG, Ferwerda G, van der Graaf CA, Van der Meer JW, Kullberg BJ. Recognition of fungal pathogens by toll-like receptors. Curr Pharm Des 2006; 12: 4195–4201
  • Dong Kim K, Zhao J, Auh S, et al. Adaptive immune cells temper initial innate responses. Nat Med 2007; 13: 1248–1252
  • Fidel PLJr, Sobel JD. The role of cell-mediated immunity in candidiasis. Trends Microbiol 1994; 2: 202–206
  • Puccetti P, Romani L, Bistoni F. A TH1-TH2-like switch in candidiasis: new perspectives for therapy. Trends Microbiol 1995; 3: 237–240
  • Filipe-Santos O, Bustamante J, Chapgier A, et al. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 2006; 18: 347–361
  • Moraes-Vasconcelos D, Grumach AS, Yamaguti A, et al. Paracoccidioides brasiliensis disseminated disease in a patient with inherited deficiency in the beta1 subunit of the interleukin (IL)-12/IL-23 receptor. Clin Infect Dis 2005; 41: e31–7
  • Zerbe CS, Holland SM. Disseminated histoplasmosis in persons with interferon-gamma receptor 1 deficiency. Clin Infect Dis 2005; 41: e38–41
  • De Luca A, Montagnoli C, Zelante T, et al. Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J Immunol 2007; 179: 5999–6008
  • Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 2007; 37: 2695–2706
  • Bellocchio S, Montagnoli C, Bozza S, et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 2004; 172: 3059–3069
  • Bellocchio S, Moretti S, Perruccio K, et al. TLRs govern neutrophil activity in aspergillosis. J Immunol 2004; 173: 7406–7415
  • Netea MG, Gow NA, Munro CA, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 2006; 116: 1642–1650
  • Sato K, Yang XL, Yudate T, et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 2006; 281: 3854–3866
  • Behnsen J, Narang P, Hasenberg M, et al. Environmental dimensionality controls the interaction of phagocytes with the pathogenic fungi Aspergillus fumigatus and Candida albicans. PLoS Pathoge 2007; 3: e13
  • Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 2007; 7: 179–190
  • Netea MG, Van der Meer JW, Kullberg BJ. Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol 2004; 12: 484–488
  • Bellocchio S, Gaziano R, Bozza S, et al. Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor signalling from TLR-2 to TLR-4. J Antimicrob Chemother 2005; 55: 214–222
  • Biondo C, Midiri A, Messina L, et al. MyD88 and TLR2, but not TLR4, are required for host defense against Cryptococcus neoformans. Eur J Immunol 2005; 35: 870–878
  • Bozza S, Gaziano R, Lipford GB, et al. Vaccination of mice against invasive aspergillosis with recombinant Aspergillus proteins and CpG oligodeoxynucleotides as adjuvants. Microbes Infect 2002; 4: 1281–1290
  • Braedel S, Radsak M, Einsele H, et al. Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. Br J Haematol 2004; 125: 392–399
  • Edwards L, Williams AE, Krieg AM, et al. Stimulation via Toll-like receptor 9 reduces Cryptococcus neoformans-induced pulmonary inflammation in an IL-12-dependent manner. Eur J Immunol 2004; 35: 273–281
  • Ferreira KS, Bastos KR, Russo M, Almeida SR. Interaction between Paracoccidioides brasiliensis and pulmonary dendritic cells induces interleukin-10 production and toll-like receptor-2 expression: possible mechanisms of susceptibility. J Infect Dis 2007; 196: 1108–1115
  • Gil ML, Gozalbo D. TLR2, but not TLR4, triggers cytokine production by murine cells in response to Candida albicans yeasts and hyphae. Microbes Infect 2006; 8: 2299–2304
  • Kesh S, Mensah NY, Peterlongo P, et al. TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann N Y Acad Sci 2005; 1062: 95–103
  • Mambula SS, Sau K, Henneke P, Golenbock DT, Levitz SM. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 2002; 277: 39320–39326
  • Murciano C, Villamon E, Gozalbo D, et al. Toll-like receptor 4 defective mice carrying point or null mutations do not show increased susceptibility to Candida albicans in a model of hematogenously disseminated infection. Med Mycol 2006; 44: 149–157
  • Netea MG, Sutmuller R, Hermann C, et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 2004; 172: 3712–3718
  • Netea MG, Warris A, Van der Meer JW, et al. Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis 2003; 188: 320–326
  • Rivera A, Ro G, Van Epps HL, et al. Innate immune activation and CD4+ T cell priming during respiratory fungal infection. Immunity 2006; 25: 665–675
  • Sau K, Mambula SS, Latz E, et al. The antifungal drug amphotericin B promotes inflammatory cytokine release by a Toll-like receptor- and CD14-dependent mechanism. J Biol Chem 2003; 278: 37561–37568
  • van der Graaf CA, Netea MG, Verschueren I, van der Meer JW, Kullberg BJ. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect Immun 2005; 73: 7458–7464
  • Villamon E, Gozalbo D, Roig P, et al. Myeloid differentiation factor 88 (MyD88) is required for murine resistance to Candida albicans and is critically involved in Candida-induced production of cytokines. Eur Cytokine Netw 2004; 15: 263–271
  • Carvalho A, Pasqualotto AC, Pitzurra L, et al. Polymorphisms in Toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infrect Dis 2008; 197: 618–631
  • Specht CA, Nong S, Dan JM, Lee CK, Levitz SM. Contribution of glycosylation to T cell responses stimulated by recombinant Cryptococcus neoformans mannoprotein. J Infect Dis 2007; 196: 796–800
  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 2003; 197: 1107–1117
  • Gantner BN, Simmons RM, Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. Embo J 2005; 24: 1277–1286
  • Gersuk GM, Underhill DM, Zhu L, Marr KA. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J Immunol 2006; 176: 3717–3724
  • Hohl TM, Van Epps HL, Rivera A, et al. Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display. PLoS Pathog 2005; 1: e30
  • Rappleye CA, Eissenberg LG, Goldman WE. Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc Natl Acad Sci USA 2007; 104: 1366–1370
  • Saijo S, Fujikado N, Furuta T, et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 2007; 8: 39–46
  • Steele C, Marrero L, Swain S, et al. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J Exp Med 2003; 198: 1677–1688
  • Steele C, Rapaka RR, Metz A, et al. The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog 2005; 1: e42
  • Taylor PR, Tsoni SV, Willment JA, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 2007; 8: 31–38
  • Viriyakosol S, Fierer J, Brown GD, Kirkland TN. Innate immunity to the pathogenic fungus Coccidioides posadasii is dependent on Toll-like receptor 2 and Dectin-1. Infect Immun 2005; 73: 1553–1560
  • Heinsbroek SE, Brown GD, Gordon S. Dectin-1 escape by fungal dimorphism. Trends Immunol 2005; 26: 352–354
  • Gross O, Gewies A, Finger K, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 2006; 442(7103)651–656
  • Leibundgut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 2007; 8: 630–638
  • Romani L, Bistoni F, Puccetti P. Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends Microbiol 2002; 10: 508–514
  • Romani L, Puccetti P. Dendritic cells in immunity and vaccination against fungi In: Lutz MB, Romani N, Steinkasserer A, Wiley-VCH Verlag GmBH & Co. K GaA. Dendritic Cells. Biology, Diseases and Therapies. WeinheimGermany: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. pp 915–930.
  • Montagnoli C, Perruccio K, Bozza S, et al. Provision of antifungal immunity and concomitant alloantigen tolerization by conditioned dendritic cells in experimental hematopoietic transplantation. Blood Cells Mol Dis 2008; 40: 55–62
  • Awasthi S. Dendritic cell-based vaccine against Coccidioides infection. Ann NY Acad Sci 2007; 1111: 269–274
  • Romani L, Bistoni F, Puccetti P. Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Curr Opin Microbiol 2003; 6: 338–343
  • Lindell DM, Ballinger MN, McDonald RA, Toews GB, Huffnagle GB. Immunologic homeostasis during infection: coexistence of strong pulmonary cell-mediated immunity to secondary Cryptococcus neoformans infection while the primary infection still persists at low levels in the lungs. J Immunol 2006; 177: 4652–4661
  • Lindell DM, Moore TA, McDonald RA, Toews GB, Huffnagle GB. Distinct compartmentalization of CD4+ T-cell effector function versus proliferative capacity during pulmonary cryptococcosis. Am J Pathol 2006; 168: 847–855
  • Yauch LE, Lam JS, Levitz SM. Direct inhibition of T-cell responses by the Cryptococcus capsular polysaccharide glucuronoxylomannan. PLoS Pathog 2006; 2: e120
  • Allen HL, Deepe GS, Jr. Apoptosis modulates protective immunity to the pathogenic fungus Histoplasma capsulatum. J Clin Invest 2005; 115: 2875–2885
  • Deepe GS, Jr. Immune response to early and late Histoplasma capsulatum infections. Curr Opin Microbiol 2000; 3: 359–362
  • Gomez FJ, Woodward EO, Pilcher-Roberts R, Gibbons RS, Deepe GS, Jr. V beta 6+ and V beta 4+ T cells exert cooperative activity in clearance of secondary infection with Histoplasma capsulatum. J Immunol 2001; 166: 2855–2862
  • Levitz SM, Mathews HL, Murphy JW. Direct antimicrobial activity of T cells. Immunol Today 1995; 16: 387–391
  • Wuthrich M, Filutowicz HI, Allen HL, Deepe GS, Klein BS. V beta1+ J beta1.1 + /V alpha2+ J alpha49+ CD4+ T cells mediate resistance against infection with Blastomyces dermatitidis. Infect Immun 2007; 75: 193–200
  • Wuthrich M, Filutowicz HI, Warner T, Deepe GS, Jr, Klein BS. Vaccine immunity to pathogenic fungi overcomes the requirement for CD4 help in exogenous antigen presentation to CD8+ T cells: implications for vaccine development in immune-deficient hosts. J Exp Med 2003; 197: 1405–1416
  • Mencacci A, Del Sero G, Cenci E, et al. Endogenous interleukin 4 is required for development of protective CD4+ T helper type 1 cell responses to Candida albicans. J Exp Med 1998; 187: 307–317
  • Dong C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol 2006; 6: 329–333
  • Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007; 8: 345–350
  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24: 179–189
  • Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 2003; 19: 641–644
  • Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr Opin Immunol 2007; 19: 281–286
  • Bowman EP, Chackerian AA, Cua DJ. Rationale and safety of anti-interleukin-23 and anti-interleukin-17A therapy. Curr Opin Infect Dis 2006; 19: 245–252
  • Heninger E, Hogan LH, Karman J, et al. Characterization of the Histoplasma capsulatum-induced granuloma. J Immunol 2006; 177: 3303–3313
  • Kleinschek MA, Muller U, Brodie SJ, et al. IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J Immunol 2006; 176: 1098–1106
  • Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 2004; 190: 624–631
  • Rudner XL, Happel KI, Young EA, Shellito JE. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun 2007; 75: 3055–3061
  • Bozza S, Fallarino F, Pitzurra L, et al. A crucial role for tryptophan catabolism at the host/Candida albicans interface. J Immunol 2005; 174: 2910–2918
  • Montagnoli C, Fallarino F, Gaziano R, et al. Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism. J Immunol 2006; 176: 1712–1723
  • Andersson A, Kokkola R, Wefer J, Erlandsson-Harris H, Harris RA. Differential macrophage expression of IL-12 and IL-23 upon innate immune activation defines rat autoimmune susceptibility. J Leukoc Biol 2004; 76: 1118–1124
  • Hung CY, Xue J, Cole GT. Virulence mechanisms of Coccidioides. Ann NY Acad Sci 2007; 1111: 225–235
  • Yoshitomi H, Sakaguchi N, Kobayashi K, et al. A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med 2005; 201: 949–960
  • Dillon S, Agrawal S, Banerjee K, et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest 2006; 116: 916–928
  • Romani L, Fallarino F, De Luca A, et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous diseases. Nature 2008; 451: 211–216
  • Laurence A, O'Shea JJ. T(H)-17 differentiation: of mice and men. Nat Immunol 2007; 8: 903–905
  • Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4 + CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 2007; 178: 6725–6729
  • Jankovic D, Trinchieri G. IL-10 or not IL-10: that is the question. Nat Immunol 2007; 8: 1281–1283
  • O'Garra A, Vieira P. Regulatory T cells and mechanisms of immune system control. Nat Med 2004; 10: 801–805
  • Hori S, Carvalho TL, Demengeot J. CD25 + CD4+ regulatory T cells suppress CD4+ T cell-mediated pulmonary hyperinflammation driven by Pneumocystis carinii in immunodeficient mice. Eur J Immunol 2002; 32: 1282–1291
  • McKinley L, Logar AJ, McAllister F, et al. Regulatory T cells dampen pulmonary inflammation and lung injury in an animal model of Pneumocystis pneumonia. J Immunol 2006; 177: 6215–6226
  • Montagnoli C, Bacci A, Bozza S, et al. B7/CD28-dependent CD4 + CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J Immunol 2002; 169: 6298–6308
  • Cavassani KA, Campanelli AP, Moreira AP, et al. Systemic and local characterization of regulatory T cells in a chronic fungal infection in humans. J Immunol 2006; 177: 5811–5818
  • Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol 2007; 7: 875–888
  • Deepe GS, Jr, Gibbons RS. TNf-alpha antagonism generates a population of antigen specific CD4 + CD2 + T cells that inhibit protective immunity in munne histoplasmosis. J Immunol 2008; 180: 1088–1097
  • Ryan KR, Lawson CA, Lorenzi AR, et al. CD4 + CD25+ T-regulatory cells are decreased in patients with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J Allergy Clin Immunol 2005; 116: 1158–1159
  • Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004; 4: 762–774
  • Grohmann U, Fallarino F, Puccetti P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 2003; 24: 242–248
  • Fallarino F, Grohmann U, You S, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 2006; 176: 6752–6761
  • Puccetti P, Grohmann U. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation. Nat Rev Immunol 2007; 7: 817–823
  • Grohmann U, Volpi C, Fallarino F, et al. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 2007; 13: 579–586
  • Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut?. Trends Microbiol 2004; 12: 562–568
  • Pirofski LA, Casadevall A. Immunomodulators as an antimicrobial tool. Curr Opin Microbiol 2006; 9: 489–495
  • Roilides E, Lyman CA, Panagopoulou P, Chanock S. Immunomodulation of invasive fungal infections. Infect Dis Clin North Am 2003; 17: 193–219
  • Romani L. Host immune reactivity and antifungal chemotherapy: the power of being together. J Chemother 2001; 13: 347–353
  • Tilg H, Moschen A, Kaser A. Mode of function of biological anti-TNF agents in the treatment of inflammatory bowel diseases. Expert Opin Biol Ther 2007; 7: 1051–1059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.