1,157
Views
0
CrossRef citations to date
0
Altmetric
Hematology

Cost-utility analysis of ferric derisomaltose versus ferric carboxymaltose in patients with inflammatory bowel disease and iron deficiency anemia in England

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 392-403 | Received 13 Oct 2023, Accepted 31 Jan 2024, Published online: 11 Mar 2024

References

  • McDowell C, Farooq U, Haseeb M. Inflammatory bowel disease. StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
  • Jimenez KM, Gasche C. Management of iron deficiency anaemia in inflammatory bowel disease. Acta Haematol. 2019;142(1):30–36. doi: 10.1159/000496728.
  • Gasche C, Lomer MCE, Cavill I, et al. Iron, anaemia, and inflammatory bowel diseases. Gut. 2004;53(8):1190–1197. doi: 10.1136/gut.2003.035758.
  • Gasche C, Berstad A, Befrits R, et al. Guidelines on the diagnosis and management of iron deficiency and anemia in inflammatory bowel diseases. Inflamm Bowel Dis. 2007;13(12):1545–1553. doi: 10.1002/ibd.20285.
  • Hodges P, Sauriol D, Man SF, et al. Vitamin and iron intake in patients with Crohn’s disease. J Am Diet Assoc. 1984;84(6):664–669. doi: 10.1016/S0002-8223(21)08097-4.
  • Madu AJ, Ughasoro MD. Anaemia of chronic disease: an in-depth review. Med Princ Pract. 2017;26(1):1–9. doi: 10.1159/000452104.
  • Murawska N, Fabisiak A, Fichna J. Anemia of chronic disease and iron deficiency anemia in inflammatory bowel diseases: pathophysiology, diagnosis, and treatment. Inflamm Bowel Dis. 2016;22(5):1198–1208. doi: 10.1097/MIB.0000000000000648.
  • Martin J, Radeke HH, Dignass A, et al. Current evaluation and management of anemia in patients with inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2017;11(1):19–32. doi: 10.1080/17474124.2017.1263566.
  • Erichsen K, Hausken T, Ulvik RJ, et al. Ferrous fumarate deteriorated plasma antioxidant status in patients with crohn disease. Scand J Gastroenterol. 2003;38(5):543–548. doi: 10.1080/00365520310000771.
  • Recombinant erythropoietin for the treatment of anemia in inflammatory bowel disease. PubMed [Internet]. [cited 2022 Oct 12]. Available at https://pubmed.ncbi.nlm.nih.gov/8592524/.
  • Baird-Gunning J, Bromley J. Correcting iron deficiency. Aust Prescr. 2016;39(6):193–199. doi: 10.18773/austprescr.2016.069.
  • Joint United Kingdom (UK) Blood Transfusion and Tissue Transplantation Services Professional Advisory Committee. JPAC - transfusion guidelines. 2014. [cited 2022 Oct 12]. [Internet]. Available at https://transfusionguidelines.org.uk/.
  • Pollock RF, Muduma G. An economic analysis of ferric derisomaltose versus ferric carboxymaltose in the treatment of iron deficiency anemia in patients with inflammatory bowel disease in Norway, Sweden, and Finland. Clinicoecon Outcomes Res. 2021;13:9–18. doi: 10.2147/CEOR.S284959.
  • Zoller H, Schaefer B, Glodny B. Iron-induced hypophosphatemia: an emerging complication. Curr Opin Nephrol Hypertens. 2017;26(4):266–275. doi: 10.1097/MNH.0000000000000329.
  • Emrich IE, Lizzi F, Siegel JD, et al. Hypophosphatemia after high-dose iron repletion with ferric carboxymaltose and ferric derisomaltose—the randomized controlled HOMe aFers study. BMC Med. 2020;18(1):178. doi: 10.1186/s12916-020-01643-5.
  • Glaspy JA, Lim-Watson MZ, Libre MA, et al. Hypophosphatemia associated with intravenous iron therapies for iron deficiency anemia: a systematic literature review. Ther Clin Risk Manag. 2020;16:245–259. doi: 10.2147/TCRM.S243462.
  • Wolf M, Rubin J, Achebe M, et al. Effects of iron isomaltoside vs ferric carboxymaltose on hypophosphatemia in iron-deficiency anemia: two randomized clinical trials. JAMA. 2020;323(5):432–443. doi: 10.1001/jama.2019.22450.
  • Adkinson NF, Strauss WE, Macdougall IC, et al. Comparative safety of intravenous ferumoxytol versus ferric carboxymaltose in iron deficiency anemia: a randomized trial. Am J Hematol. 2018;93(5):683–690. doi: 10.1002/ajh.25060.
  • Wolf M, Chertow GM, Macdougall IC, et al. Randomized trial of intravenous iron-induced hypophosphatemia. JCI Insight. 2018;3(23):e124486. doi: 10.1172/jci.insight.124486.
  • Pharmacosmos A/S. A randomized, double-blinded, comparative trial comparing the incidence of hypophosphatemia in relation to repeated treatment courses of iron isomaltoside and ferric carboxymaltose in subjects with iron deficiency anaemia due to inflammatory bowel disease. 2021. [Internet]. [cited 2022 Oct 11]. Available at https://clinicaltrials.gov/ct2/show/NCT03466983.
  • Zoller H, Wolf M, Blumenstein I, et al. Hypophosphataemia following ferric derisomaltose and ferric carboxymaltose in patients with iron deficiency anaemia due to inflammatory bowel disease (PHOSPHARE-IBD): a randomised clinical trial. Gut. 2022;72(4):644–653. doi: 10.1136/gutjnl-2022-327897.
  • Schaefer B, Tobiasch M, Wagner S, et al. Hypophosphatemia after intravenous iron therapy: comprehensive review of clinical findings and recommendations for management. Bone. 2022;154:116202. doi: 10.1016/j.bone.2021.116202.
  • Huang LL, Lee D, Troster SM, et al. A controlled study of the effects of ferric carboxymaltose on bone and haematinic biomarkers in chronic kidney disease and pregnancy. Nephrol Dial Transplant off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2018;33:1628–1635.
  • Schaefer B, Zoller H, Wolf M. Risk factors for and effects of persistent and severe hypophosphatemia following ferric carboxymaltose. J Clin Endocrinol Metab. 2021;107(4):1009–1019. doi: 10.1210/clinem/dgab852.
  • Lyseng-Williamson KA, Keating GM. Ferric carboxymaltose: a review of its use in iron-deficiency anaemia. Drugs. 2009;69(6):739–756. doi: 10.2165/00003495-200969060-00007.
  • Dahlerup JF, Jacobsen BA, van der Woude J, et al. High-dose fast infusion of parenteral iron isomaltoside is efficacious in inflammatory bowel disease patients with iron-deficiency anaemia without profound changes in phosphate or fibroblast growth factor 23. Scand J Gastroenterol. 2016;51(11):1332–1338. doi: 10.1080/00365521.2016.1196496.
  • Hu S, Liu L, Pollock RF, et al. Intravenous iron for the treatment of iron deficiency anemia in China: a patient-level simulation model and cost-utility analysis comparing ferric derisomaltose with iron sucrose. J Med Econ. 2022;25(1):561–570. doi: 10.1080/13696998.2022.2065092.
  • Kulnigg S, Teischinger L, Dejaco C, et al. Rapid recurrence of IBD-associated anemia and iron deficiency after intravenous iron sucrose and erythropoietin treatment. Am J Gastroenterol. 2009;104(6):1460–1467. doi: 10.1038/ajg.2009.114.
  • Walidainy H, Zulfikar Z. An improved design of linear congruential generator based on wordlengths reduction technique into FPGA. IJECE. 2015;5(1):55. doi: 10.11591/ijece.v5i1.pp55-63.
  • Aksan A, Schoepfer A, Juillerat P, et al. Iron formulations for the treatment of iron deficiency anemia in patients with inflammatory bowel disease: a cost-effectiveness analysis in Switzerland. Adv Ther. 2021;38(1):660–677. doi: 10.1007/s12325-020-01553-1.
  • Table 12. Ganzoni formula for iron isomaltoside 1000 dosing [Internet]. Canadian Agency for Drugs and Technologies in Health; 2020. [cited 2023 Oct 31]. Available at https://www.ncbi.nlm.nih.gov/books/NBK564172/table/pe.app5.tab4/.
  • Bennett CL, Westerman IL. Economic analysis during phase III clinical trials: who, what, when, where, and why. Oncol Williston Park N. 1995;9:169–175.
  • Pollock RF, Muduma G. A systematic literature review and indirect comparison of iron isomaltoside and ferric carboxymaltose in iron deficiency anemia after failure or intolerance of oral iron treatment. Expert Rev Hematol. 2019;12(2):129–136. doi: 10.1080/17474086.2019.1575202.
  • Bellos I, Frountzas M, Pergialiotis V. Comparative risk of hypophosphatemia following the administration of intravenous iron formulations: a network meta-analysis. Transfus Med Rev. 2020;34(3):188–194. doi: 10.1016/j.tmrv.2020.07.002.
  • Blumenstein I, Shanbhag S, Langguth P, et al. Newer formulations of intravenous iron: a review of their chemistry and key safety aspects - hypersensitivity, hypophosphatemia, and cardiovascular safety. Expert Opin Drug Saf. 2021;20(7):757–769. doi: 10.1080/14740338.2021.1912010.
  • WHO. Life tables by country (GHE: life tables). [Internet]. [cited 2022 Oct 21]. Available at https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-ghe-life-tables-by-country.
  • NICE. Guide to the methods of technology appraisal 2013: process and methods [PMG9] [Internet]. London and Manchester: National Institute for Health and Care Excellence; 2013. [cited 2022 Dec 5]. Available at https://www.nice.org.uk/process/pmg9/resources/guide-to-the-methods-of-technology-appraisal-2013-pdf-2007975843781.
  • 5 The reference case. | Guide to the methods of technology appraisal 2013 | Guidance | NICE [Internet]. NICE; [cited 2022 Oct 18]. Available at https://www.nice.org.uk/process/pmg9/chapter/the-reference-case.
  • Kassianides X, Bhandari S. Hypophosphataemia, fibroblast growth factor 23 and third-generation intravenous iron compounds: a narrative review. Drugs Context. 2021;10:1–29. doi: 10.7573/dic.2020-11-3.
  • Medicines and Healthcare products Regulatory Agency. Drug safety update: ferric carboxymaltose (Ferinject▼): risk of symptomatic hypophosphataemia leading to osteomalacia and fractures [Internet]. GOV.UK; 2020. [cited 2021 Aug 12]. Available at https://www.gov.uk/drug-safety-update/ferric-carboxymaltose-ferinject-risk-of-symptomatic-hypophosphataemia-leading-to-osteomalacia-and-fractures.
  • Schaefer B, Tobiasch M, Viveiros A, et al. Hypophosphataemia after treatment of iron deficiency with intravenous ferric carboxymaltose or iron isomaltoside-a systematic review and meta-analysis. Br J Clin Pharmacol. 2021;87(5):2256–2273. doi: 10.1111/bcp.14643.
  • Fragkos KC, Sehgal V, Rogers J, et al. Hypophosphataemia after intravenous iron therapy with ferric carboxymaltose—real world experience from a tertiary Centre in the UK. GastroHep. 2020;2(5):205–214. doi: 10.1002/ygh2.415.
  • Mulhern BJ, Bansback N, Norman R, et al. Valuing the SF-6Dv2 classification system in the United Kingdom using a discrete-choice experiment with duration. Med Care. 2020;58(6):566–573. doi: 10.1097/MLR.0000000000001324.
  • Brennan VK, Dixon S. Incorporating process utility into quality adjusted life years: a systematic review of empirical studies. PharmacoEconomics. 2013;31(8):677–691. doi: 10.1007/s40273-013-0066-1.
  • Hu S, Wu D, Wu J, et al. Disutilities associated with intravenous iron infusions: results from a time trade-off survey and diminishing marginal utility model for treatment attributes in China. Patient Relat Outcome Meas. 2023;14:253–267. doi: 10.2147/PROM.S400389.
  • NHS England and NHS Improvement. National tariff payment system. [Internet]. London: NHS England and NHS Improvement; 2022/23. [cited 2022 May 26]. Available at https://www.england.nhs.uk/publication/national-tariff-payment-system-documents-annexes-and-supporting-documents/.
  • Jones KC, Burns A. Unit costs of health and social care 2021. Kent, UK: Personal Social Services Research Unit; 2021.
  • NICE. Phosphate [Internet]. [cited 2022 Oct 13]. Available at https://bnf.nice.org.uk/drugs/phosphate/medicinal-forms/.
  • Xu X, Grossetta Nardini HK, Ruger JP. Micro-costing studies in the health and medical literature: protocol for a systematic review. Syst Rev. 2014;3(1):47. doi: 10.1186/2046-4053-3-47.
  • Potter S, Davies C, Davies G, et al. The use of micro-costing in economic analyses of surgical interventions: a systematic review. Health Econ Rev. 2020;10(1):3. doi: 10.1186/s13561-020-0260-8.
  • NICE. Ferric derisomaltose. [Internet]. [cited 2022 Oct 13]. Available at https://bnf.nice.org.uk/drugs/ferric-derisomaltose/medicinal-forms/.
  • NICE. Ferric carboxymaltose [Internet]. [cited 2022 Oct 13]. Available at https://bnf.nice.org.uk/drugs/ferric-carboxymaltose/medicinal-forms/.
  • NHS Open Data Portal. Secondary Care Medicines Data (SCMD): important update. [Internet]. 2020. [cited 2023 Feb 27]. Available at https://opendata.nhsbsa.net/dataset/secondary-care-medicines-data.
  • HCE. NHS Orders. [Internet]. [cited 2022 Oct 18]. Available at https://www.hce-uk.com/NHS-Orders.
  • NHS England. Improving non-emergency patient transport services: report of the non-emergency patient transport review; 2021. [Internet]. [cited 2023 Nov 27]. Available at https://www.england.nhs.uk/wp-content/uploads/2021/08/B0682-fnal-report-of-the-non-emergency-patient-transport-review.pdf.
  • Ahmed W, Pöhlmann J, Brewerton S, et al. HSD114 reductions in travel time and carbon dioxide emissions arising from patient transportation to hospitals in England for treatment with intravenous iron: an analysis comparing ferric derisomaltose with ferric carboxymaltose. Value Health. 2022;25(12):S295. doi: 10.1016/j.jval.2022.09.1457.
  • Office for National Statistics. Labour costs and labour income, UK; 2023. [Internet]. [cited 2023 Nov 27]. Available at https://www.ons.gov.uk/economy/economicoutputandproductivity/productivitymeasures/datasets/labourcostsandlabourshare.
  • Pollock RF, Muduma G. A patient-level cost-effectiveness analysis of iron isomaltoside versus ferric carboxymaltose for the treatment of iron deficiency anemia in the United Kingdom. J Med Econ. 2020;23(7):751–759. doi: 10.1080/13696998.2020.1745535.
  • Pollock RF, Biggar P. Indirect methods of comparison of the safety of ferric derisomaltose, iron sucrose and ferric carboxymaltose in the treatment of iron deficiency anemia. Expert Rev Hematol. 2020;13(2):187–195. doi: 10.1080/17474086.2020.1709437.
  • Pollock RF, Kalra PA, Kalra PR, et al. A systematic review, meta-analysis, and indirect comparison of blindly adjudicated cardiovascular event incidence with ferric derisomaltose, ferric carboxymaltose, and iron sucrose. Adv Ther. 2022;39(10):4678–4691. doi: 10.1007/s12325-022-02242-x.
  • Aksan A, Beales ILP, Baxter G, et al. Evaluation of the cost-effectiveness of iron formulations for the treatment of iron deficiency anaemia in patients with inflammatory bowel disease in the UK. Clinicoecon Outcomes Res. 2021;13:541–552. doi: 10.2147/CEOR.S306823.
  • Ramirez de Arellano A, Norton N, Enkusson D, et al. Cost-effectiveness of intravenous iron formulations in patients with iron deficiency anaemia and inflammatory bowel disease, in a Swedish regional setting using real-world tender prices. GastroHep. 2022;2022:e9991311–10. doi: 10.1155/2022/9991311.
  • Aksan A, Işık H, Radeke HH, et al. Systematic review with network meta-analysis: comparative efficacy and tolerability of different intravenous iron formulations for the treatment of iron deficiency anaemia in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2017;45(10):1303–1318. doi: 10.1111/apt.14043.
  • Watt JA, Giovane CD, Jackson D, et al. Incorporating dose effects in network meta-analysis. BMJ. 2022;376:e067003. doi: 10.1136/bmj-2021-067003.
  • Zoller H, Pammer LM, Schaefer B, et al. Incidence of fractures after intravenous iron: a retrospective analysis comparing ferric carboxymaltose and ferric derisomaltose. ASH; 2023. [cited 2023 Nov 10]. Available at https://ash.confex.com/ash/2023/webprogram/Paper174508.html.
  • Ifie E, Oyibo SO, Joshi H, et al. Symptomatic hypophosphataemia after intravenous iron therapy: an underrated adverse reaction. Endocrinol Diabetes Metab Case Rep. 2019;2019:19.
  • Davis S, Stevenson M, Tappenden P, et al. NICE DSU technical support document 15: cost-effectiveness modelling using patient-level simulation. Sheffield; 2014.