257
Views
0
CrossRef citations to date
0
Altmetric
Cardiovascular

Economic and healthcare resource utilization assessments of PET imaging in Coronary Artery Disease diagnosis: a systematic review and discussion of opportunities for future economic evaluations

, , , ORCID Icon, , , & show all
Pages 715-729 | Received 20 Feb 2024, Accepted 17 Apr 2024, Published online: 06 May 2024

References

  • Toia P, La Grutta L, Smeraldi T, et al. Updated diagnostic & prognostic paradigm for CAD: a narrative review. Cardiovasc Diagn Ther. 2020;10(6):1979–1991. doi: 10.21037/cdt-20-526.
  • Brown JC, Gerhardt TE, Kwon E. Risk factors for coronary artery disease. StatPearls. Treasure Island (FL): statPearls Publishing; 2023.
  • Khan MA, Hashim MJ, Mustafa H, et al. Global epidemiology of ischemic heart disease: results from the global burden of disease study. Cureus. 2020;12(7):e9349. doi: 10.7759/cureus.9349.
  • Bauersachs R, Zeymer U, Brière J-B, et al. Burden of coronary artery disease and peripheral artery disease: a literature review. Cardiovasc Ther. 2019;2019:8295054–8295059. doi: 10.1155/2019/8295054.
  • Walker S, Asaria M, Manca A, et al. Long-term healthcare use and costs in patients with stable coronary artery disease: a population-based cohort using linked health records (CALIBER). Eur Heart J Qual Care Clin Outcomes. 2016;2(2):125–140. doi: 10.1093/ehjqcco/qcw003.
  • Nelson AJ, Ardissino M, Psaltis PJ. Current approach to the diagnosis of atherosclerotic coronary artery disease: more questions than answers. Ther Adv Chronic Dis. 2019;10:2040622319884819. doi: 10.1177/2040622319884819.
  • Goyal A, Pagidipati N, Hill CL, et al. Clinical and economic implications of inconclusive noninvasive test results in stable patients with suspected coronary artery disease: insights from the PROMISE trial. Circ Cardiovasc Imaging. 2020;13(4):e009986. doi: 10.1161/CIRCIMAGING.119.009986.
  • Ladapo JA, Goldfeld KS, Douglas PS. Projected morbidity and mortality from missed diagnoses of coronary artery disease in the United States. Int J Cardiol. 2015;195:250–252. doi: 10.1016/j.ijcard.2015.05.033.
  • Bradley SM, Spertus JA, Kennedy KF, et al. Patient selection for diagnostic coronary angiography and hospital-level percutaneous coronary intervention appropriateness: insights from the national cardiovascular data registry. JAMA Intern Med. 2014;174(10):1630–1639. doi: 10.1001/jamainternmed.2014.3904.
  • Patel MR, Dai D, Hernandez AF, et al. Prevalence and predictors of nonobstructive coronary artery disease identified with coronary angiography in contemporary clinical practice. Am Heart J. 2014;167(6):846–852. e2. doi: 10.1016/j.ahj.2014.03.001.
  • Rachwan RJ, Mshelbwala FS, Dardari Z, et al. False-positive stress echocardiograms: predictors and prognostic relevance. Int J Cardiol. 2019;296:157–163. doi: 10.1016/j.ijcard.2019.08.037.
  • Gulati M, Levy PD, Mukherjee D, et al. AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines (vol 144, pg e368, 2021). CIRCULATION. 2021;144(22):E455–E455. 2021
  • Madhavan MV, Gersh BJ, Alexander KP, et al. Coronary artery disease in patients ≥80 years of age. J Am Coll Cardiol. 2018;71(18):2015–2040. doi: 10.1016/j.jacc.2017.12.068.
  • Raso I, Passarelli I, Valenti G, et al. The diagnostic process of stable angina: still many doubts since heberden’s first description 250 years ago. J Cardiovasc Med (Hagerstown). 2018;19(2):45–50. doi: 10.2459/JCM.0000000000000610.
  • Knuuti J, Wijns W, Saraste A, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes: the task force for the diagnosis and management of chronic coronary syndromes of the european society of cardiology (ESC). Eur Heart J. 2020;41(3):407–477. doi: 10.1093/eurheartj/ehz425.
  • Garcia M, Mulvagh SL, Merz CN, et al. Cardiovascular disease in women: clinical perspectives. Circ Res. 2016;118(8):1273–1293. doi: 10.1161/CIRCRESAHA.116.307547.
  • Nguyen PK, Nag D, Wu JC. Sex differences in the diagnostic evaluation of coronary artery disease. J Nucl Cardiol. 2011;18(1):144–152. doi: 10.1007/s12350-010-9315-2.
  • Taqueti VR. Coronary microvascular dysfunction in vasospastic angina: provocative role for the microcirculation in macrovessel disease prognosis. J Am Coll Cardiol. 2019;74(19):2361–2364. doi: 10.1016/j.jacc.2019.09.042.
  • Taqueti VR, Dorbala S, Wolinsky D, et al. Myocardial perfusion imaging in women for the evaluation of stable ischemic heart disease-state-of-the-evidence and clinical recommendations. J Nucl Cardiol. 2017;24(4):1402–1426. doi: 10.1007/s12350-017-0926-8.
  • Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35(17):1101–1111. doi: 10.1093/eurheartj/eht513.
  • Murthy VL, Naya M, Foster CR, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126(15):1858–1868. doi: 10.1161/CIRCULATIONAHA.112.120402.
  • Park S, Kang HJ, Jeon JH, et al. Recent advances in the pathogenesis of microvascular complications in diabetes. Arch Pharm Res. 2019;42(3):252–262. doi: 10.1007/s12272-019-01130-3.
  • Wu KY, Timmerman NP, McPhedran R, et al. Differential association of diabetes mellitus and female sex with impaired myocardial flow reserve across the spectrum of epicardial coronary disease. Eur Heart J Cardiovasc Imaging. 2020;21(5):576–584. doi: 10.1093/ehjci/jez163.
  • Bajaj NS, Osborne MT, Gupta A, et al. Coronary microvascular dysfunction and cardiovascular risk in obese patients. J Am Coll Cardiol. 2018;72(7):707–717. doi: 10.1016/j.jacc.2018.05.049.
  • Taqueti VR, Everett BM, Murthy VL, et al. Interaction of impaired coronary flow reserve and cardiomyocyte injury on adverse cardiovascular outcomes in patients without overt coronary artery disease. Circulation. 2015;131(6):528–535. doi: 10.1161/CIRCULATIONAHA.114.009716.
  • Pepine CJ, Anderson RD, Sharaf BL, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the national heart, lung and blood institute WISE (women’s ischemia syndrome evaluation) study. J Am Coll Cardiol. 2010;55(25):2825–2832. doi: 10.1016/j.jacc.2010.01.054.
  • IMV. 2023 PET imaging market summary report 2023.
  • Rahman H, Corcoran D, Aetesam-Ur-Rahman M, et al. Diagnosis of patients with angina and non-obstructive coronary disease in the catheter laboratory. Heart. 2019;105(20):1536–1542. doi: 10.1136/heartjnl-2019-315042.
  • Takx RA, Blomberg BA, El Aidi H, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imag. 2015;8(1):e002666. doi: 10.1161/CIRCIMAGING.114.0026666.
  • Mettler FA, Guiberteau MJ. Essentials of nuclear medicine and molecular imaging E-Book. Philadelphia (PA): Elsevier Health Sciences; 2018.
  • Driessen RS, Raijmakers PG, Stuijfzand WJ, et al. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging. 2017;33(7):1021–1031. doi: 10.1007/s10554-017-1084-4.
  • Stendahl JC, Kwan JM, Pucar D, et al. Radiotracers to address unmet clinical needs in cardiovascular imaging, part 1: technical considerations and perfusion and neuronal imaging. J Nucl Med. 2022;63(7):986–994. doi: 10.2967/jnumed.121.263507.
  • Sciagrà R, Lubberink M, Hyafil F, et al. EANM procedural guidelines for PET/CT quantitative myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2021;48(4):1040–1069. doi: 10.1007/s00259-020-05046-9.
  • Carpeggiani C, Picano E, Brambilla M, et al. Variability of radiation doses of cardiac diagnostic imaging tests: the RADIO-EVINCI study (RADIationdOse subproject of the EVINCI study). BMC Cardiovasc Disord. 2017;17(1):63. doi: 10.1186/s12872-017-0474-9.
  • El Fakhri G, Kardan A, Sitek A, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with (82)Rb PET: comparison with (13)N-ammonia PET. J Nucl Med. 2009;50(7):1062–1071. doi: 10.2967/jnumed.104.007831.
  • Schindler TH, Dilsizian V. Coronary microvascular dysfunction: clinical considerations and noninvasive diagnosis. JACC Cardiovasc Imaging. 2020;13(1 Pt 1):140–155. doi: 10.1016/j.jcmg.2018.11.036.
  • Taqueti VR, Di Carli MF. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-Art review. J Am Coll Cardiol. 2018;72(21):2625–2641. doi: 10.1016/j.jacc.2018.09.042.
  • Bateman TM. Current status of myocardial perfusion PET in the United States. Annals of Nuclear Cardiology. 2017;3(1):157–162. doi: 10.17996/anc.17-00047.
  • Ziadi MC, Dekemp RA, Williams KA, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58(7):740–748. doi: 10.1016/j.jacc.2011.01.065.
  • Mc Ardle BA, Dowsley TF, deKemp RA, et al. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60(18):1828–1837. doi: 10.1016/j.jacc.2012.07.038.
  • Parker MW, Iskandar A, Limone B, et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging. 2012;5(6):700–707. doi: 10.1161/CIRCIMAGING.112.978270.
  • Xu J, Cai F, Geng C, et al. Diagnostic performance of CMR, SPECT, and PET imaging for the identification of coronary artery disease: a meta-analysis. Front Cardiovasc Med. 2021;8:621389. doi: 10.3389/fcvm.2021.621389.
  • Jaarsma C, Leiner T, Bekkers SC, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59(19):1719–1728. doi: 10.1016/j.jacc.2011.12.040.
  • Juárez-Orozco LE, Tio RA, Alexanderson E, et al. Quantitative myocardial perfusion evaluation with positron emission tomography and the risk of cardiovascular events in patients with coronary artery disease: a systematic review of prognostic studies. Eur Heart J Cardiovasc Imaging. 2018;19(10):1179–1187. doi: 10.1093/ehjci/jex331.
  • Green R, Cantoni V, Acampa W, et al. Prognostic value of coronary flow reserve in patients with suspected or known coronary artery disease referred to PET myocardial perfusion imaging: a meta-analysis. J Nucl Cardiol. 2021;28(3):904–918. doi: 10.1007/s12350-019-02000-7.
  • Smulders MW, Jaarsma C, Nelemans PJ, et al. Comparison of the prognostic value of negative non-invasive cardiac investigations in patients with suspected or known coronary artery disease-a meta-analysis. Eur Heart J Cardiovasc Imaging. 2017;18(9):980–987. doi: 10.1093/ehjci/jex014.
  • Maddahi J, Agostini D, Bateman TM, et al. Flurpiridaz F-18 PET myocardial perfusion imaging in patients with suspected coronary artery disease. J Am Coll Cardiol. 2023;82(16):1598–1610. doi: 10.1016/j.jacc.2023.08.016.
  • Nayfeh M, Ahmed AI, Saad JM, et al. The role of cardiac PET in diagnosis and prognosis of ischemic heart disease: optimal modality across different patient populations. Curr Atheroscler Rep. 2023;25(7):351–357. doi: 10.1007/s11883-023-01107-0.
  • Patterson JC, 2nd, Mosley ML. How available is positron emission tomography in the United States? Mol Imaging Biol. 2005;7(3):197–200. doi: 10.1007/s11307-005-4116-8.
  • McGowan J, Sampson M, Salzwedel DM, et al. PRESS peer review of electronic search strategies: 2015 guideline statement. J Clin Epidemiol. 2016;75:40–46. doi: 10.1016/j.jclinepi.2016.01.021.
  • Amir-Behghadami M, Janati A. Population, intervention, comparison, outcomes and study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg Med J. 2020;37(6):387–387. doi: 10.1136/emermed-2020-209567.
  • DistillerSR. Version 2.35. DistillerSR Inc.: 2021. Accessed June 12, 2023. https://distillersr.com.
  • Hlatky MA, Shilane D, Hachamovitch R, et al. Economic outcomes in the study of myocardial perfusion and coronary anatomy imaging roles in coronary artery disease registry: the SPARC study. J Am Coll Cardiol. 2014;63(10):1002–1008. doi: 10.1016/j.jacc.2013.11.038.
  • Merhige ME, Breen WJ, Shelton V, et al. Impact of myocardial perfusion imaging with PET and (82)Rb on downstream invasive procedure utilization, costs, and outcomes in coronary disease management. J Nucl Med. 2007;48(7):1069–1076. doi: 10.2967/jnumed.106.038323.
  • Lorenzoni V, Bellelli S, Caselli C, et al. Cost-effectiveness analysis of stand-alone or combined non-invasive imaging tests for the diagnosis of stable coronary artery disease: results from the EVINCI study. Eur J Health Econ. 2019;20(9):1451–1449. doi: 10.1007/s10198-019-01096-5.
  • Garber AM, Solomon NA. Cost-effectiveness of alternative test strategies for the diagnosis of coronary artery disease. Ann Intern Med. 1999;130(9):719–728. doi: 10.7326/0003-4819-130-9-199905040-00003.
  • Patterson RE, Eisner RL, Horowitz SF. Comparison of cost-effectiveness and utility of exercise ECG, single photon emission computed tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation. 1995;91(1):54–65. doi: 10.1161/01.cir.91.1.54.
  • Mimouni M, Bulsei J, Darlington M, et al. Cost-effectiveness of 82-Rubidium PET myocardial perfusion imaging for the diagnosis of myocardial ischemia depending on the prevalence of coronary artery disease. EJNMMI Res. 2023;13(1):9. doi: 10.1186/s13550-023-00954-x.
  • Ma Q, Sridhar G, Power T, et al. Assessing the downstream value of first-line cardiac positron emission tomography (PET) imaging using real world medicare fee-for-service claims data. J Nucl Cardiol. 2021;28(5):2126–2137. doi: 10.1007/s12350-019-01974-8.
  • Siegrist PT, Husmann L, Knabenhans M, et al. (13)N-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost-effectiveness. Eur J Nucl Med Mol Imaging. 2008;35(5):889–895. doi: 10.1007/s00259-007-0647-3.
  • Patel KK, Al Badarin F, Chan PS, et al. Randomized comparison of clinical effectiveness of pharmacologic SPECT and PET MPI in symptomatic CAD patients. JACC Cardiovasc Imaging. 2019;12(9):1821–1831. doi: 10.1016/j.jcmg.2019.04.020.
  • Ananthasubramaniam K, Kitt TM, Saxena A, et al. Healthcare resource utilization among patients receiving non-invasive testing for coronary artery disease in an outpatient setting: a cohort study reflecting daily practice trends. J Nucl Cardiol. 2022;29(4):1776–1787. doi: 10.1007/s12350-021-02549-2.
  • Pelletier-Galarneau M, Vandenbroucke E, Lu M, et al. Characteristics and key differences between patient populations receiving imaging modalities for coronary artery disease diagnosis in the US. BMC Cardiovasc Disord. 2023;23(1):251. doi: 10.1186/s12872-023-03218-7.
  • Klein E, Miller RJH, Sharir T, et al. Automated quantitative analysis of CZT SPECT stratifies cardiovascular risk in the obese population: analysis of the REFINE SPECT registry. J Nucl Cardiol. 2022;29(2):727–736. doi: 10.1007/s12350-020-02334-7.
  • Tamarappoo BK, Otaki Y, Sharir T, et al. Differences in prognostic value of myocardial perfusion single-Photon emission computed tomography using high-Efficiency Solid-State detector between men and women in a large international multicenter study. Circ Cardiovasc Imaging. 2022;15(6):e012741.
  • Acampa W, Petretta M, Daniele S, et al. Incremental prognostic value of stress myocardial perfusion imaging in asymptomatic diabetic patients. Atherosclerosis. 2013;227(2):307–312. doi: 10.1016/j.atherosclerosis.2013.01.011.
  • Alnabelsi T, Ahmed AI, Han Y, et al. Added prognostic value of plaque burden to computed tomography angiography and myocardial perfusion imaging in patients with diabetes. Am J Med. 2022;135(6):761–768.e7. doi: 10.1016/j.amjmed.2021.12.010.
  • Boiten HJ, van Domburg RT, Valkema R, et al. Dobutamine stress myocardial perfusion imaging: 8-year outcomes in patients with diabetes mellitus. Eur Heart J Cardiovasc Imaging. 2016;17(8):871–876. doi: 10.1093/ehjci/jev351.
  • Boiten HJ, van den Berge JC, Valkema R, et al. Ischemia burden on stress SPECT MPI predicts long-term outcomes after revascularization in stable coronary artery disease. J Nucl Cardiol. 2018;25(3):958–966. doi: 10.1007/s12350-016-0735-5.
  • Boiten HJ, van der Sijde JN, Ruitinga PR, et al. Long-term prognostic value of exercise technetium-99m tetrofosmin myocardial perfusion single-photon emission computed tomography. J Nucl Cardiol. 2012;19(5):907–913. doi: 10.1007/s12350-012-9585-y.
  • Korbee RS, Boiten HJ, Ottenhof M, et al. What is the value of stress (99m)Tc-tetrofosmin myocardial perfusion imaging for the assessment of very long-term outcome in obese patients? J Nucl Cardiol. 2013;20(2):227–233. doi: 10.1007/s12350-012-9657-z.
  • Bourque JM, Patel CA, Ali MM, et al. Prevalence and predictors of ischemia and outcomes in outpatients with diabetes mellitus referred for single-photon emission computed tomography myocardial perfusion imaging. Circ Cardiovasc Imaging. 2013;6(3):466–477. doi: 10.1161/CIRCIMAGING.112.000259.
  • Candell-Riera J, Ferreira-González I, Marsal JR, et al. Usefulness of exercise test and myocardial perfusion-gated single photon emission computed tomography to improve the prediction of major events. Circ Cardiovasc Imaging. 2013;6(4):531–541. doi: 10.1161/CIRCIMAGING.112.000158.
  • Caobelli F, Haaf P, Haenny G, et al. Prognostic value of myocardial perfusion scintigraphy in asymptomatic patients with diabetes mellitus at high cardiovascular risk: 5-year follow-up of the prospective multicenter BARDOT trial. Eur J Nucl Med Mol Imaging. 2021;48(11):3512–3521. doi: 10.1007/s00259-021-05349-5.
  • Engbers EM, Timmer JR, Mouden M, et al. Prognostic value of myocardial perfusion imaging with a Cadmium-Zinc-Telluride SPECT camera in patients suspected of having coronary artery disease. J Nucl Med. 2017;58(9):1459–1463. doi: 10.2967/jnumed.116.188516.
  • Gaibazzi N, Barbieri A, Boriani G, et al. Imaging functional stress test for stable chest pain symptoms in patients at low pretest probability of coronary artery disease: current practice and long-term outcome. Echocardiography. 2019;36(6):1095–1102. doi: 10.1111/echo.14352.
  • Gaibazzi N, Siniscalchi C, Porter TR, et al. Vasodilator stress single-Photon emission computed tomography or contrast stress echocardiography association with hard cardiac events in suspected coronary artery disease. J Am Soc Echocardiogr. 2018;31(6):683–691. doi: 10.1016/j.echo.2018.01.024.
  • Ghatak A, Padala S, Katten DM, et al. Risk stratification among diabetic patients undergoing stress myocardial perfusion imaging. J Nucl Cardiol. 2013;20(4):529–538. doi: 10.1007/s12350-013-9731-1.
  • Han D, Rozanski A, Gransar H, et al. Comparison of diabetes to other prognostic predictors among patients referred for cardiac stress testing: a contemporary analysis from the REFINE SPECT registry. J Nucl Cardiol. 2022;29(6):3003–3014. doi: 10.1007/s12350-021-02810-8.
  • Levsky JM, Spevack DM, Travin MI, et al. Coronary computed tomography angiography versus radionuclide myocardial perfusion imaging in patients with chest pain admitted to telemetry: a randomized trial. Ann Intern Med. 2015;163(3):174–183. doi: 10.7326/M14-2948.
  • López Rodríguez E, Jauregui Garrido B, Ruiz Franco-Baux J, et al. Prognostic value of myocardial perfusion scintigraphy in diabetic patients and without coronary lesion. Rev Esp Med Nucl Imagen Mol (Engl Ed). 2021;40(2):100–106. doi: 10.1016/j.remnie.2021.01.008.
  • Meyer M, Nance JW, Jr., Schoepf UJ, et al. Cost-effectiveness of substituting dual-energy CT for SPECT in the assessment of myocardial perfusion for the workup of coronary artery disease. Eur J Radiol. 2012;81(12):3719–3725. doi: 10.1016/j.ejrad.2010.12.055.
  • Min JK, Koduru S, Dunning AM, et al. Coronary CT angiography versus myocardial perfusion imaging for near-term quality of life, cost and radiation exposure: a prospective multicenter randomized pilot trial. J Cardiovasc Comput Tomogr. 2012;6(4):274–283. doi: 10.1016/j.jcct.2012.06.002.
  • Morales DCV, Bhavnani SP, Ahlberg AW, et al. Coronary risk equivalence of diabetes assessed by SPECT-MPI. J Nucl Cardiol. 2019;26(4):1093–1102. doi: 10.1007/s12350-017-1114-6.
  • Nanasato M, Matsumoto N, Nakajima K, et al. Prognostic impact of reducing myocardial ischemia identified using ECG-gated myocardial perfusion SPECT in japanese patients with coronary artery disease: J-ACCESS 4 study. Int J Cardiol. 2018;267:202–207. doi: 10.1016/j.ijcard.2018.05.090.
  • Poulin MF, Alexander S, Doukky R. Prognostic implications of stress modality on mortality risk and cause of death in patients undergoing office-based SPECT myocardial perfusion imaging. J Nucl Cardiol. 2016;23(2):202–211. doi: 10.1007/s12350-014-0064-5.
  • Ramsaran E, Dai Q, Sundaresan D, et al. Mortality in stable coronary disease in patients with intermediate- or high-risk myocardial perfusion imaging. Am J Cardiol. 2022;168:1–10. doi: 10.1016/j.amjcard.2021.12.018.
  • Romero-Farina G, Aguadé-Bruix S, Cuellar-Calabria H, et al. Gender differences in outcome in patients with diabetes mellitus. J Nucl Cardiol. 2022;29(1):72–82. doi: 10.1007/s12350-020-02195-0.
  • Romero-Farina G, Candell-Riera J, Aguadé-Bruix S, et al. A novel clinical risk prediction model for myocardial infarction, coronary revascularization, and cardiac death according to clinical, exercise, and gated SPECT variables (VH-RS). Eur Heart J Cardiovasc Imaging. 2020;21(2):210–221.
  • Santos MT, Parker MW, Heller GV. Evaluating gender differences in prognosis following SPECT myocardial perfusion imaging among patients with diabetes and known or suspected coronary disease in the modern era. J Nucl Cardiol. 2013;20(6):1021–1029. doi: 10.1007/s12350-013-9771-6.
  • Simonsen JA, Gerke O, Rask CK, et al. Prognosis in patients with suspected or known ischemic heart disease and normal myocardial perfusion: long-term outcome and temporal risk variations. J Nucl Cardiol. 2013;20(3):347–357. doi: 10.1007/s12350-013-9696-0.
  • Songy B, Guernou M, Hivoux D, et al. Prognostic value of one millisievert exercise myocardial perfusion imaging in patients without known coronary artery disease. J Nucl Cardiol. 2018;25(1):120–130. doi: 10.1007/s12350-016-0601-5.
  • Stillman AE, Gatsonis C, Lima JAC, et al. Coronary computed tomography angiography compared with single photon emission computed tomography myocardial perfusion imaging as a guide to optimal medical therapy in patients presenting with stable angina: the RESCUE trial. J Am Heart Assoc. 2020;9(24):e017993.
  • Takura T, Yokoi H, Tanaka N, et al. Health economics-based verification of functional myocardial ischemia evaluation of stable coronary artery disease in Japan: a long-term longitudinal study using propensity score matching. J Nucl Cardiol. 2022;29(3):1356–1369. doi: 10.1007/s12350-020-02502-9.
  • Tandon S, Wackers FJ, Inzucchi SE, et al. Gender-based divergence of cardiovascular outcomes in asymptomatic patients with type 2 diabetes: results from the DIAD study. Diab Vasc Dis Res. 2012;9(2):124–130. doi: 10.1177/1479164111431470.
  • Tandon V, Hall D, Yam Y, et al. Rates of downstream invasive coronary angiography and revascularization: computed tomographic coronary angiography vs. Tc-99m single photon emission computed tomography. Eur Heart J. 2012;33(6):776–782. doi: 10.1093/eurheartj/ehr346.
  • Thom H, West NE, Hughes V, et al. Cost-effectiveness of initial stress cardiovascular MR, stress SPECT or stress echocardiography as a gate-keeper test, compared with upfront invasive coronary angiography in the investigation and management of patients with stable chest pain: mid-term outcomes from the CECaT randomised controlled trial. BMJ Open. 2014;4(2):e003419. doi: 10.1136/bmjopen-2013-003419.
  • Yoda S, Nakanishi K, Tano A, et al. Major cardiac event risk scores estimated with gated myocardial perfusion imaging in japanese patients with coronary artery disease. J Cardiol. 2016;67(1):64–70. doi: 10.1016/j.jjcc.2015.04.008.
  • Zeltser R, Tortez LM, Druz RS, et al. Downstream resource utilization following SPECT: impact of age and gender. J Nucl Cardiol. 2017;24(5):1657–1661. doi: 10.1007/s12350-016-0464-9.
  • Zellweger MJ, Fahrni G, Ritter M, et al. Prognostic value of "routine" cardiac stress imaging 5 years after percutaneous coronary intervention: the prospective long-term observational BASKET (basel stent kosteneffektivitäts trial) LATE IMAGING study. JACC Cardiovasc Interv. 2014;7(6):615–621. doi: 10.1016/j.jcin.2014.01.161.
  • Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129(24):2518–2527. doi: 10.1161/CIRCULATIONAHA.113.008507.
  • Gupta A, Taqueti VR, van de Hoef TP, et al. Integrated noninvasive physiological assessment of coronary circulatory function and impact on cardiovascular mortality in patients with stable coronary artery disease. Circulation. 2017;136(24):2325–2336. doi: 10.1161/CIRCULATIONAHA.117.029992.
  • Majmudar MD, Murthy VL, Shah RV, et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovasc Imaging. 2015;16(8):900–909. doi: 10.1093/ehjci/jev012.
  • Ahmed AI, Al Rifai M, Alahdab F, et al. Incremental prognostic value of digital positron emission tomography derived myocardial flow reserve: a prospective cohort study. Int J Cardiol. 2022;371:465–471. doi: 10.1016/j.ijcard.2022.09.015.
  • Brophey MD, Farukhi IM, Castanon R, et al. Accuracy of (82)Rb PET/CT myocardial perfusion imaging with regadenoson stress, including 3-Year clinical outcomes. J Nucl Med Technol. 2017;45(2):75–81. doi: 10.2967/jnmt.116.188938.
  • Farhad H, Dunet V, Bachelard K, et al. Added prognostic value of myocardial blood flow quantitation in rubidium-82 positron emission tomography imaging. Eur Heart J Cardiovasc Imaging. 2013;14(12):1203–1210. doi: 10.1093/ehjci/jet068.
  • von Felten E, Benz DC, Benetos G, et al. Prognostic value of regional myocardial flow reserve derived from (13)N-ammonia positron emission tomography in patients with suspected coronary artery disease. Eur J Nucl Med Mol Imaging. 2021;49(1):311–320. doi: 10.1007/s00259-021-05459-0.
  • Gebhard C, Fiechter M, Herzog BA, et al. Sex differences in the long-term prognostic value of (13)N-ammonia myocardial perfusion positron emission tomography. Eur J Nucl Med Mol Imaging. 2018;45(11):1964–1974. doi: 10.1007/s00259-018-4046-8.
  • Miller RJH, Han D, Singh A, et al. Relationship between ischaemia, coronary artery calcium scores, and major adverse cardiovascular events. Eur Heart J Cardiovasc Imaging. 2022;23(11):1423–1433. doi: 10.1093/ehjci/jeac082.
  • Miura S, Naya M, Kumamaru H, et al. Prognostic value of modified coronary flow capacity by (13)N-ammonia myocardial perfusion positron emission tomography in patients without obstructive coronary arteries. J Cardiol. 2022;79(2):247–256. doi: 10.1016/j.jjcc.2021.09.001.
  • Taqueti VR, Solomon SD, Shah AM, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39(10):840–849. doi: 10.1093/eurheartj/ehx721.
  • van Diemen PA, Wijmenga JT, Driessen RS, et al. Defining the prognostic value of [15O]H2O positron emission tomography-derived myocardial ischaemic burden. Eur Heart J Cardiovasc Imaging. 2021;22(6):638–646. doi: 10.1093/ehjci/jeaa305.
  • Bom MJ, van Diemen PA, Driessen RS, et al. Prognostic value of [15O]H2O positron emission tomography-derived global and regional myocardial perfusion. Eur Heart J Cardiovasc Imaging. 2020;21(7):777–786. doi: 10.1093/ehjci/jez258.
  • Aggarwal NR, Drozdova A, Askew JW, et al. Feasibility and diagnostic accuracy of exercise treadmill nitrogen-13 ammonia PET myocardial perfusion imaging of obese patients. J Nucl Cardiol. 2015;22(6):1273–1280. doi: 10.1007/s12350-015-0073-z.
  • Chow BJ, Dorbala S, Di Carli MF, et al. Prognostic value of PET myocardial perfusion imaging in obese patients. JACC Cardiovasc Imaging. 2014;7(3):278–287. doi: 10.1016/j.jcmg.2013.12.008.
  • Kay J, Dorbala S, Goyal A, et al. Influence of sex on risk stratification with stress myocardial perfusion Rb-82 positron emission tomography: results from the PET (positron emission tomography) prognosis multicenter registry. J Am Coll Cardiol. 2013;62(20):1866–1876. doi: 10.1016/j.jacc.2013.06.017.
  • Le VT, Knight S, Min DB, et al. Absence of coronary artery calcium during positron emission tomography stress testing in patients without known coronary artery disease identifies individuals with very low risk of cardiac events. Circ Cardiovasc Imaging. 2020;13(1):e009907.
  • Skali H, Di Carli MF, Blankstein R, et al. Stress myocardial perfusion PET provides incremental risk prediction in patients with and patients without diabetes. Radiol Cardiothorac Imaging. 2019;1(2):e180018. doi: 10.1148/ryct.2019180018.
  • van der Zant FM, Maurits W, Lazarenko SV, et al. Relation between pharmacological stress ECG, 13NH3-PET/CT outcome and the occurrence of cardiac events during follow-up in women with chest pain. Nucl Med Commun. 2020;41(8):783–789. doi: 10.1097/MNM.0000000000001212.
  • Breheny K, Sutton AJ, Deeks JJ. Model-based economic evaluations of diagnostic point of care tests were rarely fit for purpose. J Clin Epidemiol. 2019;109:1–11. doi: 10.1016/j.jclinepi.2018.11.003.
  • Novielli N, Cooper NJ, Abrams KR, et al. How is evidence on test performance synthesized for economic decision models of diagnostic tests? A systematic appraisal of health technology assessments in the UK since 1997. Value Health. 2010;13(8):952–957. doi: 10.1111/j.1524-4733.2010.00762.x.
  • Xie X, Tiggelaar S, Guo J, et al. Developing economic models for assessing the cost-effectiveness of multiple diagnostic tests: methods and applications. Med Decis Making. 2022;42(7):861–871. doi: 10.1177/0272989X221089268.
  • Knight S, Min DB, Le VT, et al. Implementation of a cardiac PET stress program: comparison of outcomes to the preceding SPECT era. JCI Insight. 2018;3(9)doi: 10.1172/jci.insight.120949.
  • Yokota S, Mouden M, Ottervanger JP, et al. Prognostic value of normal stress-only myocardial perfusion imaging: a comparison between conventional and CZT-based SPECT. Eur J Nucl Med Mol Imaging. 2016;43(2):296–301. doi: 10.1007/s00259-015-3192-5.