513
Views
26
CrossRef citations to date
0
Altmetric
Review Article

PRAS40: Target or modulator of mTORC1 signalling and insulin action?

&
Pages 163-175 | Received 14 Apr 2009, Accepted 21 Apr 2009, Published online: 28 May 2009

References

  • Alkhateeb H, Chabowski A, Glatz JF, Luiken JF, Bonen A. (2007). Two phases of palmitate-induced insulin resistance in skeletal muscle: impaired GLUT4 translocation is followed by a reduced GLUT4 intrinsic activity. Am J Physiol Endocrinol Metab 293:E783–93.
  • Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP. (2004). Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101:12130–5.
  • Beugnet A, Wang X, Proud CG. (2003). Target of rapamycin (TOR)-signaling and RAIP motifs play distinct roles in the mammalian TOR-dependent phosphorylation of initiation factor 4E-binding protein 1. J Biol Chem 278:40717–22.
  • Bos JL. (1998). All in the family? New insights and questions regarding interconnectivity of Ras, Rap1 and Ral. EMBO J 17:6776–82.
  • Bouzakri K, Roques M, Gual P, Espinosa S, Guebre-Egziabher F, Riou JP, Laville M, Le Marchand-Brustel Y, Tanti JF, Vidal H. (2003). Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–25.
  • Briaud I, Dickson LM, Lingohr MK, McCuaig JF, Lawrence JC, Rhodes CJ. (2005). Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in beta-cells. J Biol Chem 280:2282–93.
  • Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL. (1995). Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377:441–6.
  • Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC, Jr., Abraham RT. (1997). Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277:99–101.
  • Cantley LC, Neel BG. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96:4240–5.
  • Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL. (2004). Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18:1533–8.
  • Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. (2007). mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450:736–40.
  • Dann SG, Selvaraj A, Thomas G. (2007). mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 13:252–9.
  • Dunlop EA, Tee AR. (2009). Mammalian target of rapamycin complex 1: Signalling inputs, substrates and feedback mechanisms. Cell Signal 21:827–35.
  • European Tuberous Scleroris Consortium (1993). Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–15.
  • Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, et al. (2008). The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27:1932–43.
  • Fonseca BD, Lee VH, Proud CG. (2008). The binding of PRAS40 to 14-3-3 proteins is not required for activation of mTORC1 signalling by phorbol esters/ERK. Biochem J 411:141–9.
  • Fonseca BD, Smith EM, Lee VH, MacKintosh C, Proud CG. (2007). PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem 282:24514–24.
  • Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, Berthault MF, Magnan C, Cerasi E, Kaiser N, et al. (2008). mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57:945–57.
  • Furuya F, Hanover JA, Cheng SY. (2006). Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone beta receptor. Proc Natl Acad Sci USA 103:1780–5.
  • Garcia-Martinez JM, Alessi DR. (2008). mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416:375–85.
  • Geraghty KM, Chen S, Harthill JE, Ibrahim AF, Toth R, Morrice NA, Vandermoere F, Moorhead GB, Hardie DG, MacKintosh C. (2007). Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR. Biochem J 407:231–41.
  • Glynn EL, Lujan HL, Kramer VJ, Drummond MJ, DiCarlo SE, Rasmussen BB. (2008). A chronic increase in physical activity inhibits fed-state mTOR/S6K1 signaling and reduces IRS-1 serine phosphorylation in rat skeletal muscle. Appl Physiol Nutr Metab 33:93–101.
  • Guertin DA, Sabatini DM. (2007). Defining the role of mTOR in cancer. Cancer Cell 12:9–22.
  • Ha SH, Kim DH, Kim IS, Kim JH, Lee MN, Lee HJ, Kim JH, Jang SK, Suh PG, Ryu SH. (2006). PLD2 forms a functional complex with mTOR/raptor to transduce mitogenic signals. Cell Signal 18:2283–91.
  • Hamada S, Hara K, Hamada T, Yasuda H, Moriyama H, Nakayama R, Nagata M, Yokono K. (2009). Upregulation of the mTOR Complex 1 Pathway by Rheb in Pancreatic {beta} Cells Leads to Increased {beta} Cell Mass and Prevention of Hyperglycemia. Diabetes (In Press).
  • Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K. (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–89.
  • Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, Kasuga M, Nishimoto I, Avruch J. (1997). Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 272:26457–63.
  • Harthill JE, Pozuelo RM, Milne FC, MacKintosh C. (2002). Regulation of the 14-3-3-binding protein p39 by growth factors and nutrients in rat PC12 pheochromocytoma cells. Biochem J 368:565–72.
  • Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM, Olefsky JM, Kobayashi M. (2000). A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 14:783–94.
  • Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Hoglund P, et al. (1998). A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391:184–7.
  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004.
  • Hong F, Larrea MD, Doughty C, Kwiatkowski DJ, Squillace R, Slingerland JM. (2008). mTOR-raptor binds and activates SGK1 to regulate p27 phosphorylation. Mol Cell 30:701–11.
  • Hotamisligil GS, Erbay E. (2008). Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 8:923–934.
  • Hresko RC, Mueckler M. (2005). mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280:40406–16.
  • Huang B, Porter G. (2005). Expression of proline-rich Akt-substrate PRAS40 in cell survival pathway and carcinogenesis. Acta Pharmacol Sin 26:1253–8.
  • Huang J, Manning BD. (2008). The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412:179–90.
  • Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL. (2008). Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27:1919–31.
  • Inoki K, Li Y, Zhu T, Wu J, Guan KL. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–57.
  • Inoki K, Zhu T, Guan KL. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–90.
  • Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–8.
  • Jazet IM, Schaart G, Gastaldelli A, Ferrannini E, Hesselink MK, Schrauwen P, Romijn JA, Maassen JA, Pijl H, Ouwens DM, et al. (2008). Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated type 2 diabetic patients. Diabetologia 51:309–19.
  • Johnson MD, O’Connell M, Vito F, Bakos RS. (2009). Increased STAT-3 and synchronous activation of Raf-1-MEK-1-MAPK, and phosphatidylinositol 3-Kinase-Akt-mTOR pathways in atypical and anaplastic meningiomas. J Neurooncol 92:129–36.
  • Khamzina L, Veilleux A, Bergeron S, Marette A. (2005). Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146:1473–81.
  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–75.
  • Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P, Sabatini DM. (2003). GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11:895–904.
  • Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. (2008). Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10:935–45.
  • Kim JE, Chen J. (2000). Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc Natl Acad Sci USA 97:14340–45.
  • Korsheninnikova E, van der Zon GC, Voshol PJ, Janssen GM, Havekes LM, Grefhorst A, Kuipers F, Reijngoud DJ, Romijn JA, Ouwens DM, et al. (2006). Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice. Diabetologia 49:3049–57.
  • Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ, Roth RA. (2003). Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem 278:10189–94.
  • la Cour T, Gupta R, Rapacki K, Skriver K, Poulsen FM, Brunak S. (2003). NESbase version 1.0: a database of nuclear export signals. Nucleic Acids Res 31:393–6.
  • Land SC, Tee AR. (2007). Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 282:20534–43.
  • Lee MJ, Stephenson DA. (2007). Recent developments in neurofibromatosis type 1. Curr Opin Neurol 20:135–41.
  • Leibiger IB, Berggren PO. (2008). Insulin signaling in the pancreatic beta-cell. Annu Rev Nutr 28:233–51.
  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–68.
  • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179–93.
  • Macias MJ, Wiesner S, Sudol M. (2002). WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 513:30–7.
  • Madhunapantula SV, Sharma A, Robertson GP. (2007). PRAS40 deregulates apoptosis in malignant melanoma. Cancer Res 67:3626–36.
  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10:151–162.
  • Memmott RM, Dennis PA. (2009). Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal 21:656–64.
  • Miller AM, Brestoff JR, Phelps CB, Berk EZ, Reynolds TH. (2008). Rapamycin does not improve insulin sensitivity despite elevated mammalian target of rapamycin complex 1 activity in muscles of ob/ob mice. Am J Physiol Regul Integr Comp Physiol 295:R1431–8.
  • Nascimento EB, Fodor M, van der Zon GC, Jazet IM, Meinders AE, Voshol PJ, Vlasblom R, Baan B, Eckel J, Maassen JA, et al. (2006). Insulin-mediated phosphorylation of the proline-rich Akt substrate PRAS40 is impaired in insulin target tissues of high-fat diet-fed rats. Diabetes 55:3221–8.
  • Obata T, Yaffe MB, Leparc GG, Piro ET, Maegawa H, Kashiwagi A, Kikkawa R, Cantley LC. (2000). Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem 275:36108–15.
  • Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, Miyamoto T, Hara K, Takehana K, Avruch J, et al. (2007). The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 282:20329–39.
  • Ouwens DM, Diamant M, Fodor M, Habets DD, Pelsers MM, El HM, Dang ZC, van den Brom CE, Vlasblom R, Rietdijk A, et al. (2007). Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 50:1938–48.
  • Palaty CK, Clark-Lewis I, Leung D, Pelech SL. (1997). Phosphorylation site substrate specificity determinants for the Pim-1 protooncogene-encoded protein kinase. Biochem Cell Biol 75:153–62.
  • Panasyuk G, Nemazanyy I, Zhyvoloup A, Bretner M, Litchfield DW, Filonenko V, Gout IT. (2006). Nuclear export of S6K1 II is regulated by protein kinase CK2 phosphorylation at Ser-17. J Biol Chem 281:31188–201.
  • Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA, Alessi DR. (2007). Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405:513–22.
  • Pederson TM, Kramer DL, Rondinone CM. (2001). Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes 50:24–31.
  • Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, Klumperman J, Thorens B, Thomas G. (2000). Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 408:994–7.
  • Polak P, Hall MN. (2009). mTOR and the control of whole body metabolism. Curr Opin Cell Biol 21:209–18.
  • Rachdi L, Balcazar N, Osorio-Duque F, Elghazi L, Weiss A, Gould A, Chang-Chen KJ, Gambello MJ, Bernal-Mizrachi E. (2008). Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner. Proc Natl Acad Sci USA 105:9250–55.
  • Rhodes N, Heerding DA, Duckett DR, Eberwein DJ, Knick VB, Lansing TJ, McConnell RT, Gilmer TM, Zhang SY, Robell K, et al. (2008). Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res 68:2366–74.
  • Rosner M, Hanneder M, Siegel N, Valli A, Fuchs C, Hengstschlager M. (2008). The mTOR pathway and its role in human genetic diseases. Mutat Res 659:284–92.
  • Rosner M, Hengstschlager M. (2007). Cytoplasmic/nuclear localization of tuberin in different cell lines. Amino Acids 33:575–9.
  • Rosner M, Hengstschlager M. (2008). Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 17:2934–48.
  • Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, Dor Y, Zisman P, Meyuhas O. (2005). Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 19:2199–211.
  • Saito A, Hayashi T, Okuno S, Nishi T, Chan PH. (2006). Modulation of proline-rich akt substrate survival signaling pathways by oxidative stress in mouse brains after transient focal cerebral ischemia. Stroke 37:513–17.
  • Saito A, Narasimhan P, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH. (2004). Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor. J Neurosci 24:1584–93.
  • Saji M, Vasko V, Kada F, Allbritton EH, Burman KD, Ringel MD. (2005). Akt1 contains a functional leucine-rich nuclear export sequence. Biochem Biophys Res Commun 332:167–73.
  • Saltiel AR, Kahn CR. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806.
  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–501.
  • Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM. (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25:903–15.
  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–302.
  • Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–68.
  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–101.
  • Schalm SS, Blenis J. (2002). Identification of a conserved motif required for mTOR signaling. Curr Biol 12:632–9.
  • Schalm SS, Fingar DC, Sabatini DM, Blenis J. (2003). TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 13:797–806.
  • Shah OJ, Wang Z, Hunter T. (2004). Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14:1650–56.
  • Shaw RJ. (2008). mTOR signaling: RAG GTPases transmit the amino acid signal. Trends Biochem Sci 33:565–8.
  • Shaw RJ, Cantley LC. (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424–30.
  • Shigeyama Y, Kobayashi T, Kido Y, Hashimoto N, Asahara S, Matsuda T, Takeda A, Inoue T, Shibutani Y, Koyanagi M, et al. (2008). Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice. Mol Cell Biol 28:2971–9.
  • Singh A, Shi X, Choi KW. (2006). Lobe and Serrate are required for cell survival during early eye development in Drosophila. Development 133:4771–81.
  • Taniguchi CM, Emanuelli B, Kahn CR. (2006). Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96.
  • Tee AR, Proud CG. (2002). Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol 22:1674–83.
  • Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P, Arrieumerlou C, Hall MN. (2007). PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE 2:e1217.
  • Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA. (2009). Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol 29:1411–20.
  • Tremblay F, Brule S, Hee US, Li Y, Masuda K, Roden M, Sun XJ, Krebs M, Polakiewicz RD, Thomas G, et al. (2007). Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A 104:14056–61.
  • Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, Nowotny P, Waldhausl W, Marette A, Roden M. (2005). Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 54:2674–84.
  • Tzatsos A, Kandror KV. (2006). Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol 26:63–76.
  • Um SH, D’Alessio D, Thomas G. (2006). Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402.
  • Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, et al. (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–5.
  • van Slegtenhorst M, de Hoogt R., Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den OA, Halley D, Young J, et al. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–8.
  • Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316–323.
  • Wang L, Harris TE, Lawrence JC, Jr. (2008). Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem 283:15619–27.
  • Wang L, Harris TE, Roth RA, Lawrence JC, Jr. (2007). PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 282:20036–44.
  • Werner ED, Lee J, Hansen L, Yuan M, Shoelson SE. (2004). Insulin resistance due to phosphorylation of insulin receptor substrate-1 at serine 302. J Biol Chem 279:35298–305.
  • Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI, Hegg JW, Bandhakavi S, Griffin TJ, Kim DH. (2007). PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J Biol Chem 282:25604–12.
  • Wullschleger S, Loewith R, Hall MN. (2006). TOR signaling in growth and metabolism. Cell 124:471–84.
  • Yang Q, Inoki K, Ikenoue T, Guan KL. (2006). Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20: 2820–32.
  • Yokogami K, Wakisaka S, Avruch J, Reeves SA. (2000). Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 10:47–50.
  • Yu F, Narasimhan P, Saito A, Liu J, Chan PH. (2008). Increased expression of a proline-rich Akt substrate (PRAS40) in human copper/zinc-superoxide dismutase transgenic rats protects motor neurons from death after spinal cord injury. J Cereb Blood Flow Metab 28:44–52.
  • Zeng Z, Sarbassov dD, Samudio IJ, Yee KW, Munsell MF, Ellen JC, Giles FJ, Sabatini DM, Andreeff M, Konopleva M. (2007). Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 109:3509–12.
  • Zhang F, Beharry ZM, Harris TE, Lilly MB, Smith CD, Mahajan S, Kraft AS. (2009a). PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells. Cancer Biol Ther (In Press).
  • Zhang L, Kimball SR, Jefferson LS, Shenberger JS. (2009b). Hydrogen peroxide impairs insulin-stimulated assembly of mTORC1.. Free Radic Biol Med 46:1500–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.