Publication Cover
Aging, Neuropsychology, and Cognition
A Journal on Normal and Dysfunctional Development
Volume 31, 2024 - Issue 2
224
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

CERAD-NAB and flexible battery based neuropsychological differentiation of Alzheimer’s dementia and depression using machine learning approaches

, , , ORCID Icon &
Pages 221-248 | Received 18 Mar 2022, Accepted 14 Oct 2022, Published online: 01 Nov 2022

References

  • Abdulkadir, A., Mortamet, B., Vemuri, P., Jack, C. R., Jr, Krueger, G., & Kloppel, S. (2011). Effects of hardware heterogeneity on the performance of SVM Alzheimer’s disease classifier. Neuroimage, 58(3), 785–792. https://doi.org/10.1016/j.neuroimage.2011.06.029
  • Ahern, E., & Semkovska, M. (2017). Cognitive functioning in the first episode of major depressive disorder: A systematic review and meta-analysis. Neuropsychology, 31(1), 52–72. https://doi.org/10.1037/neu0000319
  • Ahmed, M. R., Zhang, Y., Feng, Z., Lo, B., Omer, T., & Liao, H. (2018). Neuroimaging and machine learning for dementia diagnosis: Recent advancements and future prospects. IEEE Reviews in Biomedical Engineering, 12, 19–33. https://doi.org/10.1109/RBME.2018.2886237
  • Almubark, I., Chang, L., Nguyen, T., Turner, R. S., & Jiang, X. (2019). Early detection of Alzheimer’s disease using patient neuropsychological and cognitive data and machine learning techniques. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019, 5971–597.
  • Alzheimer’s Disease International. (2019). World Alzheimer report 2019: About Alzheimer’s & dementia. Retrieved August 03, 2021, from https://www.alz.co.uk/research/world-report-2019
  • Andreas, S., Schulz, H., Volkert, J., Dehoust, M., Sehner, S., Suling, A., Ausín, B., Canuto, A., Crawford, M., Da Ronch, C., Grassi, L., Hershkovitz, Y., Muñoz, M., Quirk, A., Rotenstein, O., Santos-Olmo, A. B., Shalev, A., Strehle, J., Weber, K., … Härter, M. (2018). Prevalence of mental disorders in elderly people: The European MentDis_ICF65+ study. Journal of Psychiatry, 210(2), 125–131. https://doi.org/10.1192/bjp.bp.115.180463
  • Arbabshirani, M. R., Plis, S., Sui, J., & Calhoun, V. D. (2017). Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage, 145(Pt B), 137–165. https://doi.org/10.1016/j.neuroimage.2016.02.079
  • Azur, M. J., Stuart, E. A., Frangakis, C., & Leaf, P. J. (2011). Multiple imputation by chained equations: What is it and how does it work? International Journal of Methods in Psychiatric Research, 20(1), 40–49. https://doi.org/10.1002/mpr.329
  • Bachli M Belen et al . (2020). Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: A machine learning approach. NeuroImage, 208 116456 10.1016/j.neuroimage.2019.116456
  • Bachli, M. B., Sedeño, L., Ochab, J. K., Piguet, O., Kumfor, F., Reyes, P., Torralva, T., Roca, M., Cardona, J. F., Campo, C. G., Herrera, H., Slachevsky, A., Matallana, D., Manes, F., García, A. M., Ibáñez, A., & Chialvo, D. R. (2020). Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: A machine learning approach. Neuroimage, 208, 116456. https://doi.org/10.1016/j.neuroimage.2019.116456
  • Bacigalupo, I., Mayer, F., Lacorte, E., Di Pucchio, A., Marzolini, F., Canevelli, M., Di Fiandra, T., & Vanacore, N. (2018). A systematic review and meta-analysis on the prevalence of dementia in Europe: Estimates from the highest-quality studies adopting the DSM IV diagnostic criteria. Journal of Alzheimer’s Disease, 66(4), 1471–1481. https://doi.org/10.3233/JAD-180416
  • Beach, T. G., Monsell, S. E., Phillips, L. E., & Kukull, W. (2012). Accuracy of the clinical diagnosis of Alzheimer disease at national institute on aging Alzheimer disease centers, 2005-2010. Journal of Neuropathology and Experimental Neurolology, 71(4), 266–273. https://doi.org/10.1097/NEN.0b013e31824b211b
  • Beblo, T., Sinnamon, G., & Baune, B. T. (2011). Specifying the neuropsychology of affective disorders: Clinical, demographic and neurobiological factors. Neuropsychology Review, 21(4), 337–359. https://doi.org/10.1007/s11065-011-9171-0
  • Beck, I. R., Schmid, N. S., Berres, M., & Monsch, A. U. (2014). Establishing robust cognitive dimensions for characterization and differentiation of patients with Alzheimer’s disease, mild cognitive impairment, frontotemporal dementia and depression. International Journal of Geriatric Psychiatry, 29(6), 624–634. https://doi.org/10.1002/gps.4045
  • Begali, V. L. (2020). Neuropsychology and the dementia spectrum: Differential diagnosis, clinical management, and forensic utility. NeuroRehabilitation, 46(2), 181–194. https://doi.org/10.3233/nre-192965
  • Bhagya Shree, S. R., & Sheshadri, H. S. (2018). Diagnosis of Alzheimer’s disease using naive Bayesian classifier. Neural Computing and Applications, 29(1), 123–132. https://doi.org/10.1007/s00521-016-2416-3
  • Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST, 25(2), 197–227. https://doi.org/10.1007/s11749-016-0481-7
  • Borowski, J. (2021). NADIA: NA data imputation algorithms. R package version 0.4.1. https://cran.r-project.org/web/packages/NADIA/NADIA.pdf
  • Braaten, A. J., Parsons, T. D., McCue, R., Sellers, A., & Burns, W. J. (2006). Neurocognitive differential diagnosis of dementing diseases: Alzheimer’s Dementia, vascular dementia, frontotemporal dementia, and major depressive disorder. International Journal of Neuroscience, 116(11), 1271–1293. https://doi.org/10.1080/00207450600920928
  • Bruun, M., Rhodius-Meester, H. F. M., Koikkalainen, J., Baroni, M., Gjerum, L., Lemstra, A. W., Barkhof, F., Remes, A. M., Urhemaa, T., Tolonen, A., Rueckert, D., van Gils, M., Frederiksen, K. S., Waldemar, G., Scheltens, P., Mecocci, P., Soininen, H., Lötjönen, J., Hasselbalch, S. G., & van der Flier, W. M. (2018). Evaluating combinations of diagnostic tests to discriminate different dementia types. Alzheimers & Dementia (Amst), 10(1), 509–518. https://doi.org/10.1016/j.dadm.2018.07.003
  • Butters, M. A., Whyte, E. M., Nebes, R. D., Begley, A. E., Dew, M. A., Mulsant, B. H., Zmuda, M. D., Bhalla, R., Meltzer, C. C., Pollock, B. G., Reynolds, C. F., 3rd, & Becker, J. T. (2004). The nature and determinants of neuropsychological functioning in late-life depression. Archives of General Psychiatry, 61(6), 587–595. https://doi.org/10.1001/archpsyc.61.6.587
  • Byeon, H. (2020). Is the random forest algorithm suitable for predicting parkinson’s disease with mild cognitive impairment out of parkinson’s disease with normal cognition? International Journal of Environmental Research and Public Health, 17(7), 2594. https://doi.org/10.3390/ijerph17072594
  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority oversampling technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953
  • Chen, R., & Herskovits, E. H. (2010). Machine-learning techniques for building a diagnostic model for very mild dementia. Neuroimage, 52(1), 234–244. https://doi.org/10.1016/j.neuroimage.2010.03.084
  • Claus, J. J., Staekenborg, S. S., Roorda, J. J., Stevens, M., Herderschee, D., van Maarschalkerweerd, W., Schuurmans, L., Tielkes, C. E. M., Koster, P., Bavinck, C., & Scheltens, P. (2016). Low prevalence of mixed dementia in a cohort of 2,000 elderly patients in a memory clinic setting. Journal of Alzheimer’s Disease, 50(3), 797–806. https://doi.org/10.3233/JAD-150796
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
  • Coutanche, M. N., & Hallion, L. S. (2020). Machine learning for clinical psychology and clinical neuroscience. In A. G. C. Wright & M. N. Hallquist (Eds.), The Cambridge Handbook of Research Methods in Clinical Psychology. Cambridge University Press.
  • Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1987). California Verbal Learning Test (CVLT) adult version (Research edition ed.). The Psychological Corporation/Harcourt Brace Jovanovich.
  • Deutsche Gesellschaft für Psychiatrie, Psychotherapie und Nervenheilkunde (DGPPN), & Deutsche Gesellschaft für Neurologie (DGN). (Eds.) (2016, January). S3-leitlinie “Demenzen” [German S3 guidelines on dementia] http://www.dgn.org/images/red_leitlinien/LL_2016/PDFs_Download/038013_LL_Demenzen_2016.pdf
  • Devenney, E., & Hodges, J. R. (2017). The mini-mental state examination: Pitfalls and limitations. Practical Neurology, 17(1), 79–80. https://doi.org/10.1136/practneurol-2016-001520
  • Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14(1), 91–118. https://doi.org/10.1146/annurev-clinpsy-032816-045037
  • Dwyer, D., & Koutsouleris, N. (2022). Annual research review: Translational machine learning for child and adolescent psychiatry. The Journal of Child Psychology and Psychiatry, 63(4), 421–443. https://doi.org/10.1111/jcpp.13545
  • Er, F., Iscen, P., Sahin, S., Çinar, N., Karsidag, S., & Goularas, D. (2017). Distinguishing age-related cognitive decline from dementias: A study based on machine learning algorithms. Journal of Clinical Neuroscience, 42, 186–192. http://doi.org/10.1016/j.jocn.2017.03.021
  • Graham, S. A., Lee, E. E., Jeste, D. V., Van Patten, R., Twamley, E. W., Nebeker, C., Yamada, Y., Kim, H.-C., & Depp, C. A. (2020). Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: A conceptual review. Psychiatry Research, 284, 112732. https://doi.org/10.1016/j.psychres.2019.112732
  • Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8(3), 206–213. https://doi.org/10.1007/s11121-007-0070-9
  • Gupta, A., & Kahali, B. (2020). Machine learning-based cognitive impairment classification with optimal combination of neuropsychological tests. Alzheimers & Dementia (NY), 6(1), e12049. https://doi.org/10.1002/trc2.12049
  • Gurevich, P., Stuke, H., Kastrup, A., Stuke, H., & Hildebrandt, H. (2017). Neuropsychological testing and machine learning distinguish Alzheimer’s disease from other causes for cognitive impairment. Frontiers in Aging Neuroscience, 9(114). https://doi.org/10.3389/fnagi.2017.00114
  • Hansen, S., Keune, J., Küfner, K., Meister, R., Habich, J., Koska, J., Förster, S., Oschmann, P., & Keune, P. M. (2022). The congruency of neuropsychological and F18-FDG brain PET/CT diagnostics of Alzheimer’s disease (AD) in routine clinical practice: Insights from a mixed neurological patients cohort. BMC Neurology, 22(1), 83. https://doi.org/10.1186/s12883-022-02614-4
  • Horgan, D., Nobili, F., Teunissen, C., Grimmer, T., Mitrecic, D., Ris, L., Pirtosek, Z., Bernini, C., Federico, A., Blackburn, D., Logroscino, G., & Scarmeas, N. (2020). Biomarker testing: Piercing the fog of Alzheimer’s and related dementias. Biomedicine Hub, 5(3), 511233. https://doi.org/10.1159/00051123
  • Hosmer, D. W., Jr, Lemeshow, S., & Sturidvant, R. X. (2013). Applied logistic regression (Vol.398). John Wiley & Sons.
  • Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510. https://doi.org/10.1038/s41568-018-0016-5
  • Huber, W., Poeck, K., Weniger, D., & Willmes, K. (1983). Aachener Aphasie Test (AAT): Handanweisung. Verlag für Psychologie Hogrefe.
  • Hunter, C. A., Kirson, N. Y., Desai, U., Cummings, A. K., Faries, D. E., & Birnbaum, H. G. (2015). Medical costs of Alzheimer’s disease misdiagnosis among US Medicare beneficiaries. Alzheimers & Dementia, 11(8), 887–895. https://doi.org/10.1016/j.jalz.2015.06.1889
  • Jahn, T., Theml, T., Diehl-Schmid, J., Grimmer, T., Heldmann, B., Pohl, C., & Lautenschlager, N. (2004). CERAD-NP und flexible battery approach in der neuropsychologischen differenzialdiagnostik demenz versus depression [CERAD-NP and flexible battery approach in the neuropsychological differential diagnosis of dementia versus depression]. Zeitschrift für Gerontopsychologie & -psychiatrie, 17(2), 77–95. https://doi.org/10.1024/1011-6877.17.2.77
  • Jammeh, E. A., Carroll, C. B., Pearson, S. W., Escudero, J., Anastasiou, A., Zhao, P., Chenore, T., Zajicek, J., & Ifeachor, E. (2018). Machine-learning based identification of undiagnosed dementia in primary care: A feasibility study. BJGP Open, 2(2), 101589. https://doi.org/10.3399/bjgpopen18X101589
  • Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
  • Kang, M. J., Kim, S. Y., Na, D. L., Kim, B. C., Yang, D. W., Kim, E.-J., Na, H. R., Han, H. J., Lee, J.-H., Kim, J. H., Park, K. H., Park, K. W., Han, S.-H., Kim, S. Y., Yoo, S. J., Yoo, B., Seo, S. W., Moon, S. Y., Yang, Y., & Youn, Y. C. (2019). Prediction of cognitive impairment via deep learning trained with multi-center neuropsychological test data. BMC Medical Informatics and Decision Making, 19(1), 231. https://doi.org/10.1186/s12911-019-0974-x
  • Kao, S.-L., Chen, S.-C., Li, -Y.-Y., & Lo, R. Y. (2019). Diagnostic diversity among patients with cognitive complaints: A 3-year follow-up study in a memory clinic. International Journal of Geriatric Psychiatry, 34(12), 1900–1906. https://doi.org/10.1002/gps.5207
  • Karantzoulis, S., & Galvin, J. E. (2011). Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Review of Neurotherapeutics, 11(11), 1579–1591. https://doi.org/10.1586/ern.11.155
  • Keith, J., Williams, M., Taravath, S., & Lecci, L. (2019). A clinician’s guide to machine learning in neuropsychological research and practice. Journal of Pediatric Neuropsychology, 5(4), 177–187. https://doi.org/10.1007/s40817-019-00075-1
  • Knapskog, A.-B., Barca, M. L., & Engedal, K. (2014). Prevalence of depression among memory clinic patients as measured by the Cornell scale of depression in dementia. Aging & Mental Health, 18(5), 579–587. https://doi.org/10.1080/13607863.2013.827630
  • Kubat, M. (2015). Artificial Neural Networks. In: An Introduction to Machine Learning Springer. https://doi.org/10.1007/978-3-319-20010-1_5
  • Lang, M., Binder, M., Richter, J., Schratz, P. F. P., & Bischl, B. (2019). mlr3: A modern object-oriented machine learning framework in R. Journal of Open Source Software, 4(44), 1903. https://doi.org/10.21105/joss.01903
  • Lanza, C., Sejunaite, K., Steindel, C., Scholz, I., & Riepe, M. W. (2020). Cognitive profiles in persons with depressive disorder and Alzheimer’s disease. Brain Communications, 2(2), fcaa206. https://doi.org/10.1093/braincomms/fcaa206
  • Leyhe, T., Reynolds, C. F., Melcher, T., Linnemann, C., Klöppel, S., Blennow, K., Zetterberg, H., Dubois, B., Lista, S., & Hampel, H. (2017). A common challenge in older adults: Classification, overlap, and therapy of depression and dementia. Alzheimer’s & Dementia, 13(1), 59–71. https://doi.org/10.1016/j.jalz.2016.08.007
  • Liew, B. X. W., Kovacs, F. M., Rügamer, D., & Royuela, A. (2022). Machine learning versus logistic regression for prognostic modelling in individuals with non-specific neck pain. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 31(8), 2082–2091. https://doi.org/10.1007/s00586-022-07188-w
  • Liguori, C., Pierantozzi, M., Chiaravalloti, A., Sancesario, G. M., Mercuri, N. B., Franchini, F., Schillaci, O., & Sancesario, G. (2018). When cognitive decline and depression coexist in the elderly: CSF biomarkers analysis can differentiate Alzheimer’s disease from Late-life depression. Frontiers in Aging Neuroscience, 10, 38. https://doi.org/10.3389/fnagi.2018.00038
  • Lin, C.-Y., Chen, T.-B., Lin, K.-N., Yeh, Y.-C., Chen, W.-T., Wang, K.-S., & Wang, P.-N. (2014). Confrontation naming errors in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 37(1–2), 86–94. https://doi.org/10.1159/000354359
  • Linnemann, C., & Lang, U. E. (2020). Pathways connecting late-life depression and dementia. Frontiers in Pharmacology, 11, 279. https://doi.org/10.3389/fphar.2020.00279
  • Lobo, A., Saz, P., Marcos, G., Día, J. L., & De-la-Cámara, C. (1995). The prevalence of dementia and depression in the elderly community in a Southern European population. The Zaragoza study. Archives of General Psychiatry, 52(6), 497–506. https://doi.org/10.1001/archpsyc.1995.03950180083011
  • Logie, R., Parra, M., & Sala, S. (2015). From cognitive science to dementia assessment. Policy Insights from the Behavioral and Brain Sciences, 2(1), 81–91. https://doi.org/10.1177/2372732215601370
  • Mansoor, Y., Jastrzab, L., Dutt, S., Miller, B. L., Seeley, W. W., & Kramer, J. H. (2015). Memory profiles in pathology or biomarker confirmed Alzheimer disease and frontotemporal dementia. Alzheimer’s Disease and Associated Disorders, 29(2), 135–140. https://doi.org/10.1097/wad.0000000000000062
  • Maroco, J., Silva, S., Rodrigues, A., Guerreiro, M., Santana, I., & de Mendonça, A. (2011). Data mining methods in the prediction of dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Research Notes, 4(1), 299. https://doi.org/10.1186/1756-0500-4-299
  • Mato-Abad, V., Jiménez, I., García-Vázquez, R., Aldrey, M. J., Rivero, D., Cacabelos, P., Andrade-Garda, J., Pías-Peleteiro, J. M., & Rodríguez-Yáñez, S. (2018). Using artificial neural networks for identifying patients with mild cognitive impairment associated with depression using neuropsychological test features. Applied Sciences, 8(9), 1629. https://doi.org/10.3390/app8091629
  • Meyers, J. E., & Meyers, K. R. (1995). Rey complex tableure test and recognition trial: Professional manual. Psychological Assessment Resources.
  • Molnar, C. (2019). Interpretable machine learning - A guide for making black box models explainable. https://christophm.github.io/interpretable-ml-book/
  • Molnar, C., Bischl, B., Casalicchio, G. (2018). iml: An R package for interpretable machine learning.” Journal of Open Source Software, 3(26), 786. https://doi.org/10.21105/joss.00786
  • Murphy, K. P. (2006). Naive bayes classifiers. University of British Columbia, 18(60), 1–8.
  • Niemann, H., Sturm, W., Thoene-Otto, A., & Willmens, K. (2008). Der California Verbal Learning Test CVLT. Pearsson-Assessment.
  • Olson, L. T., Smerbeck, A., Figueroa, C. M., Raines, J. M., Szigeti, K., Schretlen, D., & Benedict, R. H. B. (2021). Preliminary validation of the global neuropsychological assessment in Alzheimer’s disease and healthy volunteers. Assessment, 1073191121991221. https://doi.org/10.1177/1073191121991221
  • Orrù, G., Monaro, M., Conversano, C., Gemignani, A., & Sartori, G. (2020). Machine learning in psychometrics and psychological research. Frontiers in Psychology, 10, 2970. https://doi.org/10.3389/fpsyg.2019.02970
  • Oswald, W. D., & Fleischmann, U. M. (1999). Nürnberger-Alters-Inventar (NAI) (4th ed.). Verlag für Psychologie Hogrefe.
  • Oswald, W. D., & Roth, E. (1987). Der Zahlen-Verbindungs-Test (ZVT); ein sprachfreier Intelligenz-Test zur Messung der “kognitiven Leistungsgeschwindigkeit”; Handanweisung. Verlag für Psychologie Hogrefe.
  • Pasternak, E., & Smith, G. (2019). Cognitive and neuropsychological examination of the elderly. Handbook of Clinical Neurology, 167, 89–104. https://doi.org/10.1016/B978–0-12-804766–8.00006–6
  • Pazzani, M. J., Mani, S., & Shankle, W. R. (2001). Acceptance of rules generated by machine learning among medical experts. Methods of Information in Medicine, 40(5), 380–385. https://doi.org/10.1055/s-0038-1634196
  • Perini, G., Ramusino, M. C., Sinforiani, E., Bernini, S., Petrachi, R., & Costa, A. (2019). Cognitive impairment in depression: Recent advances and novel treatments. Neuropsychiatry Disease and Treatment, 15, 1249–1258. https://doi.org/10.2147/NDT.S199746
  • Qu, W., Balki, I., Mendez, M., Valen, J., Levman, J., & Tyrrell, P. N. (2020). Assessing and mitigating the effects of class imbalance in machine learning with application to X-ray. International Journal of Computer Assisted Radiology and Surgery, 15(12), 2041–2048. https://doi.org/10.1007/s11548-020-02260-6
  • Rajula, H., Verlato, G., Manchia, M., Antonucci, N., & Fanos, V. (2020). Comparison of conventional statistical methods with machine learning in medicine: Diagnosis, drug development, and treatment. Medicina (Kaunas, Lithuania), 56(9), 455. https://doi.org/10.3390/medicina56090455
  • R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  • Reed, G., Sharan, P., Rebello, T. J., Keeley, J. W., Medina-Mora, M. E., Gureje, O., Ayuso-Mateos, J. L., Kanba, S., Khoury, B., Kogan, C. S., Krasnow, V. N., Maj, M., de Jesus Mari, J., Stein, D. J., Zhao, M., Akiyama, Andrews, T., Asevedo, E., Chedour, M., … Pike, K. M. (2018). The ICD-11 developmental field study of reliability of diagnoses of high-burden mental disorders: Results among adult patients in mental health settings of 13 countries. World Psychiatry, 17(2), 174–186. https://doi.org/10.1002/wps.20524
  • Rushing, N. C., Sachs-Ericsson, N., & Steffens, D. C. (2014). Neuropsychological indicators of preclinical Alzheimer’s disease among depressed older adults. Aging, Neuropsychology, and Cognition, 21(1), 99–128. https://doi.org/10.1080/13825585.2013.795514
  • Schmand, B., Eikelenboom, P., & van Gool, W. A., & Alzheimer’s Disease Neuroimaging Initiative. (2011). Value of neuropsychological tests, neuroimaging, and biomarkers for diagnosing Alzheimer’s disease in younger and older age cohorts. Journal of the American Geriatric Society, 59 (9), 1705–1710. https://doi.org/10.1111/j.1532-5415.2011.03539.x
  • Schmand, B., Huizenga, H. M., & van Gool, W. A. (2010). Meta-analysis of CSF and MRI biomarkers for detecting preclinical Alzheimer’s disease. Psychological Medicine, 40(1), 135–145. https://doi.org/10.1017/S0033291709991516
  • Schmid, N. S., Ehrensperger, M. M., Berres, M., Beck, I. R., & Monsch, A. U. (2014). The extension of the German CERAD neuropsychological assessment battery with tests assessing subcortical, executive and frontal functions improves accuracy in dementia diagnosis. Dementia and Geriatric Cognitive Disorders Extra, 4(2), 322–334. https://doi.org/10.1159/000357774
  • Schnack, H. G., & Kahn, R. S. (2016). Detecting Neuroimaging Biomarkers for Psychiatric Disorders: Sample Size Matters. Frontiers in Psychiatry, 7, 50. https://doi.org/10.3389/fpsyt.2016.00050
  • Semkovska, M., Quinlivan, L., O’Grady, T., Johnson, R., Collins, A., O’Connor, J., Knittle, H., Ahern, E., & Gload, T. (2019). Cognitive function following a major depressive episode: A systematic review and meta-analysis. Lancet Psychiatry, 6(10), 851–861. https://doi.org/10.1016/S2215-0366(19)30291-3
  • Shatte, A., Hutchinson, D., & Teague, S. (2019). Machine learning in mental health: A scoping review of methods and applications. Psychological Medicine, 49(9), 1–23. https://doi.org/10.1017/S0033291719000151
  • Snowden, J. S., Thompson, J. C., Stopford, C. L., Richardson, A. M. T., Gerhard, A., Neary, D., & Mann, D. M. A. (2011). The clinical diagnosis of early-onset dementias: Diagnostic accuracy and clinicopathological relationships. Brain, 134(9), 2478–2492. https://doi.org/10.1093/brain/awr189
  • Sommerlad, A., Perera, G., Singh-Manoux, A., Lews, G., Stewart, R., & Livingston, G. (2018). Accuracy of general hospital dementia diagnoses in England: Sensitivity, specificity, and predictors of diagnostic accuracy 2008-2016. Alzheimer’s & Dementia, S1552526018300669. https://doi.org/10.1016/j.jalz.2018.02.012
  • Steffens, D. C., Fisher, G. G., Langa, K. M., Potter, G. G., & Plassman, B. L. (2009). Prevalence of depression among older Americans: The aging, demographics and memory study. International Psychogeriatrics, 21(5), 879–888. https://doi.org/10.1017/S1041610209990044
  • Steffens, D. C., & Potter, G. G. (2008). Geriatric depression and cognitive impairment. Psychological Medicine, 38(2), 163–175. https://doi.org/10.1017/s003329170700102x
  • Szudrowicz, K. (2001). Profilanalyse kognitiver Leistungen bei Patienten mit leichter Alzheimer Demenz oder Depression und einer gesunden Kontrollgruppe im Alter von 51 bis 80 als Beitrag der Differentialdiagnose von Depression und beginnender Demenz vom Alzheimer Typ [ Thesis, Ludwig-Maximilian University Munich]
  • Tetsuka, S. (2021). Depression and dementia in older adults: A neuropsychological review. Aging and Disease, 12(8), 1920–1934. https://doi.org/10.14336/AD.2021.0526
  • Thalmann, B., Monsch, A., Schneitter, M., Bernasconi, F., & Staehelin, H. (2000). The cerad neuropsychological assessment battery (Cerad-NAB) A minimal data set as a common tool for German-speaking Europe. Neurobiology of Aging, 21(1), 30. https://doi.org/10.1016/S0197-4580(00)82810-9
  • Thomas, A. J., Gallagher, P., Robinson, L. J., Porter, R. J., Young, A. H., Ferrier, I. N., & O’Brien, J. T. (2009). A comparison of neurocognitive impairment in younger and older adults with major depression. Psychological Medicine, 39(5), 725–733. https://doi.org/10.1017/S00332917080004042
  • Tonga, J. B., Benth, J. Š., Arnevik, E. A., Werheid, K., Korsnes, M. S., & Ulstein, I. D. (2021). Managing depressive symptoms in people with mild cognitive impairment and mild dementia with a multicomponent psychotherapy intervention: A randomized controlled trail. International Psychogeriatrics, 33(3), 217–231. https://doi.org/10.1017/S1041610220000216
  • Trambaiolli, L. R., Lorena, A. C., Fraga, F. J., Kanda, P. A., Anghinah, R., & Nitrini, R. (2011). Improving Alzheimer’s disease diagnosis with machine learning techniques. Clinical EEG and Neuroscience, 42(3), 160–165. https://doi.org/10.1177/155005941104200304
  • Van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9780429492259
  • Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 1–67. https://doi.org/10.18637/jss.v045.i03
  • Weintraub, S., Wicklund, A. H., & Salmon, D. P. (2012). The neuropsychological profile of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(4), a006171–a006171. https://doi.org/10.1101/cshperspect.a006171
  • Welsh, K. A., Butters, N., Mohs, R. C., Beekly, D., Edland, S., Fillenbaum, G., & Heyman, A. (1994). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology, 44, 609–614. https://doi.org/10.1212/wnl.44.4.609
  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer. https://ggplot2.tidyverse.org
  • Williams, J. A., Weakley, A., Cool, D. J., & Schmitter-Edgecombe, M. (2013). Machine learning techniques for diagnostic differentiation of mild cognitive impairment and dementia. In Workshops at the twenty-seventh AAAI conference on artificial intelligence, (Bellevue, WA), 71–76.
  • Wolfsgruber, S., Jessen, F., Wiese, B., Stein, J., Bickel, H., Mösch, E., Weyerer, S., Werle, J., Pentzek, M., Fuchs, A., Köhler, M., Bachmann, C., Riedel-Heller, S. G., Scherer, M., Maier, W., & Wagner, M., & AgeCoDe study group. (2014). The CERAD neuropsychological assessment battery total score detects and predicts Alzheimer disease dementia with high diagnostic accuracy. American Journal of Geriatric Psychiatry, 22 (10), 1017–1028. https://doi.org/10.1016/j.jagp2012.08.021
  • Woodford, H. J., & George, J. (2007). Cognitive assessment in the elderly: A review of clinical methods. Qjm: An International Journal of Medicine, 100(8), 469–484. https://doi.org/10.1093/qjmed/hcm051
  • Wright, S. L., & Persad, C. (2007). Distinguishing between depression and dementia in older persons: Neuropsychological and neuropathological correlates. Journal of Geriatric Psychiatry and Neurology, 20(4), 189–198. https://doi.org/10.1177/0891988707308801
  • Yang, J. H., Park, J. H., Jang, S. H., & Cho, J. (2020). Novel method of classification in knee osteoarthritis: Machine learning application versus logistic regression model. Annals of Rehabilitation Medicine, 44(6), 415–427. https://doi.org/10.5535/arm.20071
  • Yim, D., Yeo, T. Y., & Park, M. H. (2020). Mild cognitive impairment, dementia, and cognitive dysfunction screening using machine learning. Journal of International Medical Research, 48(7), 300060520936881. https://doi.org/10.1177/0300060520936881
  • Zulfiker, M. S., Kabir, N., Biswas, A. A., Nazneen, T., & Uddin, M. S. (2021). An in-depth analysis of machine learning approaches to predict depression. Current Research in Behavioral Science, 2, 10044. https://doi.org/10.1016/j.crbeha.2021.100044

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.