Publication Cover
Aging, Neuropsychology, and Cognition
A Journal on Normal and Dysfunctional Development
Volume 31, 2024 - Issue 2
376
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Older adults can use memory for distinctive objects, but not distinctive scenes, to rescue associative memory deficits

ORCID Icon, , , ORCID Icon &
Pages 362-386 | Received 02 Mar 2022, Accepted 17 Jan 2023, Published online: 26 Jan 2023

References

  • Antonova, E., Parslow, D., Brammer, M., Dawson, G. R., Jackson, S. H. D., & Morris, R. G. (2009). Age-related neural activity during allocentric spatial memory. Memory, 17(2), 125–143. https://doi.org/10.1080/09658210802077348
  • Balota, D. A., Cortese, M. J., Duchek, J. M., Adams, D., Roediger, H. L., McDermott, K. B., & Yerys, B. E. (1999). Veridical and false memories in healthy older adults and in dementia of the Alzheimer’s type. Cognitive neuropsychology, 16(3–5), 361–384. https://doi.org/10.1080/026432999380834
  • Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001
  • Bastin, C., & Van der Linden, M. (2005). The effects of aging on the recognition of different types of associations. Experimental Aging Research, 32(1), 61–77. https://doi.org/10.1080/03610730500326291
  • Berron, D., Neumann, K., Maass, A., Schütze, H., Fliessbach, K., Kiven, V., Jessen, F., Sauvage, M., Kumaran, D., & Düzel, E. (2018). Age-related functional changes in domain-specific medial temporal lobe pathways. Neurobiology of Aging, 65, 86–97. https://doi.org/10.1016/j.neurobiolaging.2017.12.030
  • Bird, C. M., & Burgess, N. (2008). The hippocampus and memory: Insights from spatial processing. Nature reviews: Neuroscience, 9(3), 182–194. https://doi.org/10.1038/nrn2335
  • Bird, C. M., Vargha-Khadem, F., & Burgess, N. (2008). Impaired memory for scenes but not faces in developmental hippocampal amnesia: A case study. Neuropsychologia, 46(4), 1050–1059. https://doi.org/10.1016/j.neuropsychologia.2007.11.007
  • Bowman, C. R., & Dennis, N. A. (2015). Age differences in the neural correlates of novelty processing: The effects of item-relatedness. Brain Research, 1612, 2–15. https://doi.org/10.1016/j.brainres.2014.08.006
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357
  • Bruce, P. R., & Herman, J. F. (1983). Spatial knowledge of young and elderly adults: Scene recognition from familiar and novel perspectives. Experimental Aging Research, 9(3), 169–173. https://doi.org/10.1080/03610738308258447
  • Burke, S. N., Wallace, J. L., Hartzell, A. L., Nematollahi, S., Plange, K., & Barnes, C. A. (2011). Age-associated deficits in pattern separation functions of the perirhinal cortex: A cross-species consensus. Behavioral neuroscience, 125(6), 836–847. https://doi.org/10.1037/a0026238
  • Burke, S. N., Wallace, J. L., Nematollahi, S., Uprety, A. R., & Barnes, C. A. (2010). Pattern separation deficits may contribute to age-associated recognition impairments. Behavioral neuroscience, 124(5), 559–573. https://doi.org/10.1037/a0020893
  • Cabeza, R. (2001). Functional neuroimaging of cognitive aging. In R. Cabeza & A. Kingstone (Eds.), Handbook of Functional Neuroimaging of Cognition (pp. 331–377). Cambridge: MIT Press .
  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85–100. https://doi.org/10.1037/0882-7974.17.1.85
  • Carp, J., Park, J., Polk, T. A., & Park, D. C. (2011). Age differences in neural distinctiveness revealed by multi-voxel pattern analysis. Neuroimage, 56(2), 736–743. https://doi.org/10.1016/j.neuroimage.2010.04.267
  • Castel, A. D., & Craik, F. I. M. (2003). The effects of aging and divided attention on memory for item and associative information. Psychology and Aging, 18(4), 873–885. https://doi.org/10.1037/0882-7974.18.4.873
  • Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory & Cognition, 24(4), 403–416. https://doi.org/10.3758/BF03200930
  • Clarke, A., Pell, P. J., Ranganath, C., & Tyler, L. K. (2016). Learning warps object representations in the ventral temporal cortex. Journal of Cognitive Neuroscience, 28(7), 1010–1023. https://doi.org/10.1162/jocn_a_00951
  • Cohn, M., Emrich, S. M., & Moscovitch, M. (2008). Age-related deficits in associative memory: The influence of impaired strategic retrieval. Psychology and Aging, 23(1), 93–103. https://doi.org/10.1037/0882-7974.23.1.93
  • Dennis, N. A., Bowman, C. R., & Peterson, K. M. (2014). Age-related differences in the neural correlates mediating false recollection. Neurobiology of Aging, 35(2), 395–407. https://doi.org/10.1016/j.neurobiolaging.2013.08.019
  • Dennis, N. A., Kim, H., & Cabeza, R. (2007). Effects of aging on true and false memory formation: An fMRI study. Neuropsychologia, 45(14), 3157–3166. https://doi.org/10.1016/j.neuropsychologia.2007.07.003
  • Dimsdale-Zucker, H. R., Ritchey, M., Ekstrom, A. D., Yonelinas, A. P., & Ranganath, C. (2018). CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields. Nature communications, 9(1), 1–8. https://doi.org/10.1038/s41467-017-02752-1
  • Dodson, C. S., & Schacter, D. L. (2001). “If I had said it I would have remembered it: Reducing false memories with a distinctiveness heuristic. Psychonomic Bulletin & Review, 8(1), 155–161. https://doi.org/10.3758/BF03196152
  • Douglas, D. M. (2016). Stairway to nowhere: Structural incoherencies reveal the role of the medial temporal lobe in visual perception. (Doctoral thesis). University of Toronto. Retrieved from ProQuest Digital Dissertations.
  • Douglas, D., Thavabalasingam, S., Chorghay, Z., O’Neil, E. B., Barense, M. D., & Lee, A. C. H. (2017). Perception of impossible scenes reveals differential hippocampal and parahippocampal place area contributions to spatial coherency. Hippocampus, 27(1), 61–76. https://doi.org/10.1002/hipo.22673
  • Favila, S. E., Chanales, A. J. H., & Kuhl, B. A. (2016). Experience-dependent hippocampal pattern differentiation prevents interference during subsequent learning. Nature Communications, 7(1), 1–10. https://doi.org/10.1038/ncomms11066
  • Gaffan, D. (1994). Scene-specific memory for objects: A model of episodic memory impairment in monkeys with fornix transection. Journal of cognitive neuroscience, 6(4), 305–320. https://doi.org/10.1162/jocn.1994.6.4.305
  • Gardiner, J. M. (1988). Functional aspects of recollective experience. Memory & Cognition, 16(4), 309–313. https://doi.org/10.3758/BF03197041
  • Goh, J. O. S. (2011). Functional dedifferentiation and altered connectivity in older adults: Neural accounts of cognitive aging. Aging and Disease, 2(1), 30–48. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3066008&tool=pmcentrez&rendertype=abstract
  • Guderian, S., Dzieciol, A. M., Gadian, D. G., Jentschke, S., Doeller, C. F., Burgess, N., Mishkin, M., and Vargha-Khadem, F. (2015). Hippocampal volume reduction in humans predicts impaired allocentric spatial memory in virtual-reality navigation. Journal of Neuroscience, 35(42), 14123–14131. https://doi.org/10.1523/JNEUROSCI.0801-15.2015
  • Gutchess, A. H., Hebrank, A., Sutton, B. P., Leshikar, E., Chee, M. W. L., Tan, J. C., Goh, J. O.S., and Park, D. C. (2007). Contextual interference in recognition memory with age. NeuroImage, 35(3), 1338–1347. https://doi.org/10.1016/j.neuroimage.2007.01.043
  • Gutchess, A. H., Welsh, R. C., Hedden, T., Bangert, A., Minear, M., Liu, L. L., & Park, D. C. (2005). Aging and the neural correlates of successful picture encoding: Frontal activations compensate for decreased medial-temporal activity. Journal of cognitive neuroscience, 17(1), 84–96. https://doi.org/10.1162/0898929052880048
  • Hassabis, D., Kumaran, D., & Maguire, E. A. (2007). Using Imagination to Understand the Neural Basis of Episodic Memory. Journal of Neuroscience, 27(52), 14365–14374. https://doi.org/10.1523/JNEUROSCI.4549-07.2007
  • Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences, 104(5), 1726–1731. https://doi.org/10.1073/pnas.0610561104
  • Hassabis, D., & Maguire, E. A. (2007). Deconstructing episodic memory with construction. Trends in cognitive sciences, 11(7), 299–306. https://doi.org/10.1016/j.tics.2007.05.001
  • Hebscher, M., Levine, B., & Gilboa, A. (2018). The precuneus and hippocampus contribute to individual differences in the unfolding of spatial representations during episodic autobiographical memory. Neuropsychologia, 110, 123–133. https://doi.org/10.1016/j.neuropsychologia.2017.03.029
  • Heo, S., Prakash, R. S., Voss, M. W., Erickson, K. I., Ouyang, C., Sutton, B. P., & Kramer, A. F. (2009). Resting hippocampal blood flow, spatial memory and aging. Brain Research, 1315, 119–127. https://doi.org/10.1016/j.brainres.2009.12.020
  • Iachini, I., Iavarone, A., Senese, V. P., Ruotolo, F., & Ruggiero, G. (2009). Visuospatial memory in healthy elderly, AD and MCI: A review. Current Aging Science, 2(1), 43–59. https://doi.org/10.2174/1874609810902010043
  • Kessels, R. P. C., Hobbel, D., & Postma, A. (2007). Aging, context memory and binding: A comparison of “what, where and when” in young and older adults. The International Journal of Neuroscience, 117(6), 795–810. https://doi.org/10.1080/00207450600910218
  • Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception, 36, 1–16.
  • Koen, J. D., & Rugg, M. D. (2019). Neural dedifferentiation in the aging brain. Trends in cognitive sciences, 23(7), 547–559. https://doi.org/10.1016/j.tics.2019.04.012
  • Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010a). Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. Journal of Experimental Psychology, General, 139(3), 558–578. https://doi.org/10.1037/a0019165
  • Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010b). Scene memory is more detailed than you think: The role of categories in visual long-term memory. Psychological Science, 21(11), 1551–1556. https://doi.org/10.1177/0956797610385359
  • Laurance, H. E., Thomas, K. G. F., Newman, M. C., Kaszniak, A. W., Nadel, L., & Jacobs, W. J. (2002). Older adults map novel environments but do not place learn: Findings from a computerized spatial task. Aging, Neuropsychology, and Cognition, 9(2), 85–97. https://doi.org/10.1076/anec.9.2.85.9547
  • Lee, A. C. H., Buckley, M. J., Pegman, S. J., Spiers, H., Scahill, V. L., Gaffan, D., Bussey, T. J. … Davies, R. R., Kapur, N., Hodges, J.R., Graham, K.S. (2005). Specialization in the medial temporal lobe for processing of objects and scenes. Hippocampus, 15(6), 782–797. https://doi.org/10.1002/hipo.20101
  • Lee, A. C. H., Scahill, V. L., & Graham, K. S. (2008). Activating the medial temporal lobe during oddity judgment for faces and scenes. Cerebral Cortex, 18(3), 683–696. https://doi.org/10.1093/cercor/bhm104
  • Lee, A. C. H., Yeung, L. -K., & Barense, M. D. (2012). The hippocampus and visual perception. Frontiers in human neuroscience, 6(91), 1–17. https://doi.org/10.3389/fnhum.2012.00091
  • Libby, L. A., Reagh, Z. M., Bouffard, N. R., Ragland, J. D., & Ranganath, C. (2019). The Hippocampus generalizes across memories that share item and context information. Journal of cognitive neuroscience, 31(1), 24–35. https://doi.org/10.1162/jocn_a_01345
  • Light, L. L., Patterson, M. M., Chung, C., & Healy, M. R. (2004). Effects of repetition on associative recognition in young and older adults. Memory & Cognition, 32(7), 1182–1193. https://doi.org/10.3758/BF03196891
  • Lipman, P. D., & Caplan, L. J. (1992). Adult age differences in memory for routes: Effects of instruction and spatial diagram. Psychology and Aging, 7(3), 435–442. http://www.ncbi.nlm.nih.gov/pubmed/1388865
  • McCabe, D. P., Roediger, H. L., McDaniel, M. A., & Balota, D. A. (2009). Aging reduces veridical remembering but increases false remembering: Neuropsychological test correlates of remember-know judgments. Neuropsychologia, 47(11), 2164–2173. https://doi.org/10.1016/j.neuropsychologia.2008.11.025
  • McCormick, C., Rosenthal, C. R., Miller, T. D., & Maguire, E. A. (2017). Deciding what is possible and impossible following hippocampal damage in humans. Hippocampus, 27(3), 303–314. https://doi.org/10.1002/hipo.22694
  • Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J.L., and Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
  • Naveh Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associate deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 1170–1187. https://doi.org/10.1037/0278-7393.26.5.1170
  • Naveh Benjamin, M., Guez, J., Kilb, A., & Reedy, S. (2004). The associative memory deficit of older adults: Further support using face–name associations. Psychology and Aging, 19(3), 541–546. https://doi.org/10.1037/0882-7974.19.3.541
  • Old, S. R., & Naveh Benjamin, M. (2008). Differential effects of age on item and associative measures of memory: A meta-analysis. Psychology and Aging, 23(1), 104–118. https://doi.org/10.1037/0882-7974.23.1.104
  • Park, D. C., Polk, T. A., Mikels, J. A., Taylor, S. F., & Marshuetz, C. (2001). Cerebral aging: Integration of brain and behavioral models of cognitive function. Dialogues in clinical neuroscience, 3(3), 151–165. https://doi.org/10.31887/DCNS.2001.3.3/dcpark
  • Park, D. C., Polk, T. A., Park, R., Minear, M., Savage, A., & Smith, M. R. (2004). Aging reduces neural specialization in ventral visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(35), 13091–13095. https://doi.org/10.1073/pnas.0405148101
  • Park, D. C., Puglisi, J. T., & Sovacool, M. (1983). Memory for pictures, words, and spatial location in older adults: Evidence for pictorial superiority. Journal of Gerontology, 38(5), 582–588. https://doi.org/10.1093/geronj/38.5.582
  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial vision, 10(4), 437–442. https://doi.org/10.1163/156856897X00366
  • Reagh, Z. M., Ho, H. D., Leal, S. L., Noche, J. A., Chun, A., Murray, E. A., & Yassa, M. A. (2016). Greater loss of object than spatial mnemonic discrimination in aged adults. Hippocampus, 26(4), 417–422. https://doi.org/10.1002/hipo.22562
  • Reagh, Z. M., Noche, J. A., Tustison, N. J., Delisle, D., Murray, E. A., & Yassa, M. A. (2018). Functional imbalance of anterolateral entorhinal cortex and hippocampal dentate/CA3 underlies age-related object pattern separation deficits. Neuron, 97(5), 1187–1198.e4. https://doi.org/10.1016/j.neuron.2018.01.039
  • Robin, J., Buchsbaum, B. R., & Moscovitch, M. (2018). The primacy of spatial context in the neural representation of events. Journal of Neuroscience, 8(11), 2755–2765. https://doi.org/10.1523/JNEUROSCI.1638-17.2018
  • Robin, J., & Moscovitch, M. (2014). The effects of spatial contextual familiarity on remembered scenes, episodic memories, and imagined future events. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 459–475. https://doi.org/10.1037/a0034886
  • Robin, J., Wynn, J., & Moscovitch, M. (2015). The spatial scaffold: The effects of spatial context on memory for events. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(2), 308–315. https://doi.org/10.1037/xlm0000167
  • Ryan, L., Cardoza, J. A., Barense, M. D., Kawa, K. H., Wallentin-Flores, J., Arnold, W. T., & Alexander, G. E. (2012). Age-related impairment in a complex object discrimination task that engages perirhinal cortex. Hippocampus, 22(10), 1978–1989. https://doi.org/10.1002/hipo.22069
  • Schacter, D. L., Cendan, D. L., Dodson, C. S., & Clifford, E. R. (2001). Retrieval conditions and false recognition: Testing the distinctiveness heuristic. Psychonomic Bulletin & Review, 8(4), 827–833. https://doi.org/10.3758/BF03196224
  • Singmann, H., & Kellen, D. (2019). An introduction to mixed models for experimental psychology. In D. H. Spieler & E. Schumacher (Eds.), New Methods in Cognitive Psychology (pp. 4–31). Psychology Press).
  • Srokova, S., Hill, P. F., Koen, J. D., King, D. R., & Rugg, M. D. (2020). Neural differentiation is moderated by age in scene-selective, but not face-selective, cortical regions. eNeuro, 7(3), ENEURO.0142–20.2020. https://doi.org/10.1523/ENEURO.0142-20.2020
  • Standing, L. (1973). Learning 10000 pictures. The Quarterly Journal of Experimental Psychology, 25(2), 207–222. https://doi.org/10.1080/14640747308400340
  • Stark, S. M., & Stark, C. E. L. (2017). Age-related deficits in the mnemonic similarity task for objects and scenes. Behavioural Brain Research, 333(July), 109–117. https://doi.org/10.1016/j.bbr.2017.06.049
  • Tran, T., Tobin, K. E., Block, S. H., Puliyadi, V., Gallagher, M., & Bakker, A. (2021). Effect of aging differs for memory of object identity and object position within a spatial context. Learning & Memory, 28(7), 239–247. https://doi.org/10.1101/lm.053181.120
  • Troyer, A. K., D’Souza, N. A., Vandermorris, S., & Murphy, K. J. (2011). Age-related differences in associative memory depend on the types of associations that are formed. Aging, Neuropsychology, and Cognition, 18(3), 340–352. https://doi.org/10.1080/13825585.2011.553273
  • Tulving, E. (1985). Memory and consciousness. Canadian Psychology/Psychologie Canadienne, 26(1), 1–12. https://doi.org/10.1037/h0080017
  • Tun, P. A., Wingfield, A., Rosen, M. J., & Blanchard, L. (1998). Response latencies for false memories: Gist-based processes in normal aging. Psychology and Aging, 13(2), 230–241. https://doi.org/10.1037/0882-7974.13.2.230
  • Vogt, S., & Magnussen, S. (2007). Long-term memory for 400 pictures on a common theme. Experimental Psychology, 54(4), 298–303. https://doi.org/10.1027/1618-3169.54.4.298
  • von Restorff, H. (1933). Über die Wirkung von Bereichsbildungen im Spurenfeld. Psychologische Forschung, 18(1), 299–342. https://doi.org/10.1007/BF02409636
  • Wimmer, M., Hernandez, P., Blackwell, J., & Abel, T. (2012). Aging impairs hippocampus-dependent long-term memory for object location in mice. Neurobiology of Aging, 33(9), 2220–2224. https://doi.org/10.1016/j.neurobiolaging.2011.07.007
  • Yassa, M. A., Mattfeld, A. T., Stark, S. M., & Stark, C. E. (2011). Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. Proceedings of the National Academy of Sciences, 108(21), 8873–8878. https://doi.org/10.1073/pnas.1101567108
  • Yeung, L. -K., Ryan, J. D., Cowell, R. A., & Barense, M. D. (2013). Recognition memory impairments caused by false recognition of novel objects. Journal of Experimental Psychology: General, 142(4), 1384–1397. https://doi.org/10.1037/a0034021
  • Zeidman, P., Mullally, S. L., & Maguire, E. A. (2014). Constructing, perceiving, and maintaining scenes: Hippocampal activity and connectivity. Cerebral Cortex, 25(10), 1–20. https://doi.org/10.1093/cercor/bhu266

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.