1,058
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Intracerebroventricular administration of the (1→6)-β-d-glucan (lasiodiplodan) in male rats prevents d-penicillamine-induced behavioral alterations and lipoperoxidation in the cortex

, , , , , , , , & show all
Pages 1289-1294 | Received 03 Nov 2015, Accepted 21 Feb 2017, Published online: 08 Mar 2017

References

  • Abe M, Matsuda M. 1979. Effect of antivitamin B6 on regional GABA metabolism in mouse brain and its relation to convulsions. J Nutr Sci Vitaminol (Tokyo). 25:459–468.
  • Abe M. 1978. Relationship between gamma-aminobutyric acid metabolism and antivitamin B6-induced convulsions. J Nutr Sci Vitaminol (Tokyo). 24:419–427.
  • Alp H, Varol S, Celik MM, Altas M, Evliyaoglu O, Tokgoz O, Tanrıverdi MH, Uzar E. 2012. Protective effects of beta-glucan and gliclazide on brain tissue and sciatic nerve of diabetic rats induced by streptozosin. Exp Diabetes Res. 2012:230342.
  • Chen J, Qin J, Liu X, Han Y, Yang Z, Chang X, Ji X. 2008. Nitric oxide-mediated neuronal apoptosis in rats with recurrent febrile seizures through endoplasmic reticulum stress pathway. Neurosci Lett. 443:134–139.
  • Chen DB, Feng L, Lin XP, Zhang W, Li FR, Liang XL, Li XH. 2012. Penicillamine increases free copper and enhances oxidative stress in the brain of toxic milk mice. PLOS One. 7:1–14.
  • Ciuffi M, Gentilini G, Franchi-Micheli S, Zilletti L. 1992. D-Penicillamine affects lipid peroxidation and iron content in the rat brain cortex. Neurochem Res. 17:1241–1246.
  • Cunha MAA, Túrmina JA, Ivanov RC, Barroso RR, Marques PT, Fonseca EAI, Fortes ZB, Dekker RFH, Khaper N, Barbosa AM. 2012. Lasiodiplodan, an exocellular (1→6)-β-d-glucan from Lasiodiplodia theobromae MMPI: production on glucose, fermentation kinetics, rheology and anti-proliferative activity. J Ind Microbiol Biotechnol. 39:1179–1188.
  • Devasagayam TP, Boloor KK, Ramasarma T. 2003. Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophys. 40:300–308.
  • Du B, Xu B. 2014. Oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) of β-glucans from different sources with various molecular weight. Bioact Carbohydr Diet Fibre. 3:11–16.
  • Emerit J, Edeas M, Bricaire F. 2004. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother. 58:39–46.
  • Engel T, Henshall DC. 2009. Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis? Int J Physiol Pathophysiol Pharmacol. 1:97–115.
  • Gaté L, Paul J, Ba GN, Tew KD, Tapiero H. 1999. Oxidative stress induced in pathologies: the role of antioxidants. Biomed Pharmacother. 53:169–180.
  • Giese EC, Gascon J, Anzelmo G. 2015. Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-d-glucans. Int J Biol Macromol. 72:125–130.
  • Gross PM, Weaver DF, Bowers RJ, Nag S, Ho LT, Pang JJ, Espinosa FJ. 1994. Neurotoxicity in conscious rats following intraventricular SNAP, a nitric oxide donor. Neuropharmacology. 33:915–927.
  • Kagimura FY, Cunha MAA, Barbosa AM, Dekker RF, Malfatti CR. 2015a. Biological activities of derivatized d-glucans: a review. Int J Biol Macromol. 72:588–598.
  • Kagimura FY, Cunha MAA, Theis TV, Malfatti CR, Dekker RF, Barbosa AM, Teixeira SD, Solmé K. 2015b. Carboxymethylation of (1→6)-glucan (lasiodiplodan): preparation, characterization and antioxidant evaluation. Carbohydr Polym. 127:390–399.
  • Kayali H, Ozdag MF, Kahraman S, Aydin A, Gonul E, Sayal A, Osabasi Z, Timurkaynak E. 2005. The antioxidant effect of beta-glucan on oxidative stress status in experimental spinal cord injury in rats. Neurosurg Rev. 28:298–302.
  • Kofuji K, Aoki A, Tsubaki K, Konishi M, Isobe T, Murata Y. 2012. Antioxidant activity of β-glucan. ISRN Pharm. 2012:125864.
  • Lorincz MT. 2010. Neurologic Wilson's disease. Ann NY Acad Sci. 1184:173–187.
  • Malfatti CRM, Perry MLS, Schweigert ID, Muller AP, Paquetti L, Rigo FK, Fighera MR, Garrido-Sanabria ER, Mello CF. 2007. Convulsions induced by methylmalonic acid are associated with glutamic acid decarboxylase inhibition in rats: a role for GABA in the seizures presented by methylmalonic acidemic patients? Neuroscience. 146:1879–1887.
  • Martinc B, Grabnar I, Vovk T. 2012. The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr Neuropharmacol. 10:328–343.
  • Oliveira MS, Furian AF, Royes LFF, Fighera MR, Myskiw JC, Fiorenza NG, Mello CF. 2004. Ascorbate modulates pentylenetetrazol-induced convulsions biphasically. Neuroscience. 128:721–728.
  • Paxinos G, Watson C. 1986. The rat brain in stereotaxic coordinates. San Diego (CA): Academic press.
  • Queiroz EAIF, Fortes ZB, Cunha MAA, Barbosa AM, Khaper N, Dekker RF. 2015. Antiproliferative and pro-apoptotic effects of three fungal exocellular β-glucans in MCF-7 breast cancer cells is mediated by oxidative stress, AMP-activated protein kinase (AMPK) and the Forkhead transcription factor, FOXO3a. Int J Biochem Cell Biol. 67:14–24.
  • Rajesh R, Girija AS. 2003. Pyridoxine-dependent seizures: a review. Indian Pediatr. 40:633–638.
  • Ribeiro LR, Fighera MR, Oliveira MS, Furian AF, Rambo LM, Ferreira AP, Saraiva AL, Souza MA, Lima FD, Magni DV, et al. 2009. Methylmalonate-induced seizures are attenuated in inducible nitric oxide synthase knockout mice. Int J Dev Neurosci. 27:157–163.
  • Robitaille Y, Kemball K, Sherwin AL. 1995. β-Alanine uptake is upregulated in FeCl3-induced cortical scars. J Neurol Sci. 134:95–101.
  • Royes L, Fighera MR, Furian AF, Oliveira MS, Fiorenza NG, Petry JC, Coelho RC, Mello CF. 2007. The role of nitric oxide on the convulsive behavior and oxidative stress induced by methylmalonate: An electroencephalographic and neurochemical study. Epilepsy Res. 73:228–237.
  • Shin EJ, Ko KH, Kim WK, Chae JS, Yen TPH, Kim HK, Wie MB, Kim HC. 2008. Role of glutathione peroxidase in the ontogeny of hipocampal oxidative stress and kainate seizure sensitivity in the genetically epilepsy-prone rats. Neurochem Int. 52:1134–1147.
  • Stringer JL, Xu K. 2008. Possible mechanisms for the anticonvulsant activity of fructose-1,6-diphosphate. Epilepsia. 49:101–103.
  • Synytsya A, Novák M. 2013. Structural diversity of fungal glucans. Carbohydr Polym. 92:792–809.
  • Túrmina JA, Carraro E, Cunha MAA, Dekker RF, Barbosa AM, Santos FS, Silva LA, Malfatti CR. 2012. Toxicological assessment of β-(1→6)-glucan (lasiodiplodan) in mice during a 28-day feeding study by gavage. Molecules. 17:14298–14309.
  • Vasconcelos AF, Dekker RF, Barbosa AM, Carbonero ER, Silveira JL, Glauser B, Pereira MS, Corradi da Silva Mde L. 2013. Sulfonation and anticoagulant activity of fungal exocellular (1→6)-β-D-glucan (lasiodiplodan). Carbohydr Polym. 92:1908–1914.
  • Vasconcelos AF, Monteiro NK, Dekker RF, Barbosa AM, Carbonero ER, Silveira JL, Glauser B, Pereira MS, Mde LS. 2008. Three exopolysaccharides of the β-d-glucans-d-(1→6) type and a β-(1→3;1→6)-d-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit. Carbohydr Res. 343:2481–2485.
  • Vogel HJ. 1956. A convenient growth medium for Neurospora crassa. Microb Genetics Bull. 13:42–47.
  • Waldbaum S, Patel M. 2010. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res. 88:23–45.
  • Walshe JM. 2011. Penicillamine neurotoxicity: a hypothesis. ISRN Neurol. 2011:464572.
  • Zhang Z, Wang X, Mo X, Qi H. 2013. Degradation and the antioxidant activity of polysaccharide from Enteromorpha linza. Carbohydr Polym. 92:2084–2087.