2,173
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Phenolic composition, antioxidant activity, anticholinesterase potential and modulatory effects of aqueous extracts of some seaweeds on β-amyloid aggregation and disaggregation

, &
Pages 460-469 | Received 04 Jun 2019, Accepted 17 Jun 2019, Published online: 23 Jul 2019

References

  • Adefegha SA, Oboh G, Olasehinde TA. 2016. Alkaloid extracts from shea butter and breadfruit as potential inhibitors of monoamine oxidase, cholinesterases, and lipid peroxidation in rats’ brain homogenates: a comparative study. Comp Clin Pathol. 25:1213–1219.
  • Admassu H, Gasmalla MA, Yang R, Zhao W. 2018. Bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties. J Food Sci. 83:6–16.
  • Biradar SM, Joshi H, Chheda TK. 2014. Biochanin-A ameliorates behavioural and neurochemical derangements in cognitive-deficit mice for the betterment of Alzheimer’s disease. Human Exp Tox. 33:369–382.
  • Bixler HJ, Porse H. 2011. A decade of change in the seaweed hydrocolloids industry. J Appl Phycol. 23:321–335.
  • Burmaoglu S, Yilmaz AO, Taslimi P, Algul O, Kilic D, Gulcin I. 2018. Synthesis and biological evaluation of phloroglucinol derivatives possessing α‐glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity. Archiv Der Pharmaziepharm Life. 351:1700314.
  • Carvajal FJ, Inestrosa NC. 2011. Interactions of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosc. 4:1–26.
  • Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. 2018. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Bio. 14:450–464.
  • Feng Y, Wang X. 2012. Antioxidant therapies for Alzheimer's disease. Oxid Med Cell Long. 2012:472932.
  • Ferreira-Vieira T, Guimaraes M, Silva RL, Ribeiro F. 2016. Alzheimer's disease: targeting the cholinergic system. Curr Neuropharm. 14:101–115.
  • Gyamfi MA, Yonamine M, Aniya Y. 1999. Free radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally induced liver injuries. Gen Pharm. 32:661–667.
  • Halliwell B, Gutteridge J. 1981. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: The role of superoxide and hydroxyl radicals. FEBS Lett. 128:347–352.
  • Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, et al. 2015. Neuroinflammation in Alzheimer's disease. The Lancet Neurol. 14:388–405.
  • Kalinski JC, Waterworth S, Siwe NX, Jiwaji M, Parker-Nance S, Krause R, McPhail K, Dorrington R. 2019. Molecular networking reveals two distinct chemotypes in pyrroloiminoquinone-producing Tsitsikamma favus sponges. Mar Drugs. 17:1–16.
  • Khalid S, Abbas M, Saeed F, Bader-Ul-Ain H, Suleria HAR. 2018. Therapeutic potential of seaweed bioactive compounds. Seaweed Biomaterials. Sabyasachi Maiti, IntechOpen. [accessed 2019 April 15]. https://www.intechopen.com/books/seaweed-biomaterials/therapeutic-potential-of-seaweed-bioactive-compounds.
  • Lane RM, Kivipelto M, Greig NH. 2004. Acetylcholinesterase and its inhibition in Alzheimer disease. Clinical Neuropharm. 27:141–149.
  • Lane RM, Potkin SG, Enz A. 2006. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 9:101–124.
  • Li K, Wei S, Liu Z, Hu L, Lin J, Tan S, Mai Y, Peng W, Mai H, Hou Q, et al. 2018. The prevalence of Alzheimer's disease in China: a systematic review and meta-analysis. Iranian J Public Health. 47:1615–1626.
  • Lordan S, Ross RP, Stanton C. 2011. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs. 9:1056–1100.
  • Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. 2016. Therapies for prevention and treatment of Alzheimer’s disease. BioMed Research Int. 2016:2589276.
  • Mohamed S, Hashim SN, Rahman HA. 2012. Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends in Food Sci Tech. 23:83–96.
  • Mokhtar SH, Bakhuraysah MM, Cram DS, Petratos S. 2013. The beta-amyloid protein of Alzheimer’s disease: communication breakdown by modifying the neuronal cytoskeleton. Int J Alzheimer’s Dis. 2013:910502.
  • Mushtaq G, Greig H, Khan NA, Kamal JM. 2014. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease and type 2 diabetes mellitus. CNS Neurol Disorders-Drug Targets. 13:1432–1439.
  • Oboh G, Ademosun AO, Ogunsuyi OB, Oyedola ET, Olasehinde TA, Oyeleye SI. 2018a. In vitro anticholinesterase, antimonoamine oxidase and antioxidant properties of alkaloid extracts from kola nuts (Cola acuminata and Cola nitida). J Comp Int Med. 16. [accessed 2019 Apr 15]. https://doi.org/10.1515/jcim-2016-0155.
  • Oboh G, Adewuni TM, Ademiluyi AO, Olasehinde TA, Ademosun AO. 2018b. Phenolic constituents and inhibitory effects of Hibiscus sabdariffa L. (Sorrel) calyx on cholinergic, monoaminergic, and purinergic enzyme activities. J Dietary Suppl. 15:910–922.
  • Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA. 2013. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochemical Res. 38:413–419.
  • O'Brien RJ, Wong PC. 2011. Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci. 34:185–204.
  • Olasehinde TA, Mabinya LV, Olaniran AA, Okoh AI. 2019. Chemical characterization, antioxidant properties, cholinesterase inhibitory and anti-amyloidogenic activities of sulfated polysaccharides from some seaweeds. Bioact Carb Dietary Fibre. 18:100182. [accessed 2019 May 20]. https://doi.org/10.1016/j.bcdf.2019.100182.
  • Olasehinde TA, Odjadjare EC, Mabinya LV, Olaniran AO, Okoh AI. 2019. Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of β-amyloid fibrils. Electronic J Biotech. 40:1–9.
  • Olasehinde TA, Olaniran AO, Okoh A. 2017. Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules. 22:480–418.
  • Olasehinde TA, Olaniran AO, Okoh AI. 2019. Aqueous–ethanol extracts of some South African seaweeds inhibit β‐amyloid aggregation, cholinesterases, and β‐secretase activities in vitro. J Food Biochem. e12870. [accessed 2019 May 15]. https://doi.org/10.1111/jfbc.12870.
  • Paganga G, Al-Hashim H, Khodr H, Scott BC, Aruoma OI, Hider RC, Halliwell B, Rice-Evans CA. 1996. Mechanisms of antioxidant activities of quercetin and catechin. Redox Rep: Commun Free Radical Res. 2:359–364.
  • Perry EK, Perry RH, Blessed G, Tomlinson BE. 1978. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol. 4:273–277.
  • Perry NS, Houghton PJ, Theobald A, Jenner P, Perry EK. 2000. In vitro activity of Slavandula efolia (Spanish sage) relevant to treatment of Alzheimer’s disease. J Pharm Pharm. 52:895–902.
  • Plaza M, Cifuentes A, Ibáñez E. 2008. In the search of new functional food ingredients from algae. Trends Food Sci Tech. 19:31–39.
  • Puntel RL, Nogueira CW, Rocha J. 2005. Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochem Res. 30:225–235.
  • Quéguineur B, Goya L, Ramos S, Martín MA, Mateos R, Bravo L. 2012. Phloroglucinol: Antioxidant properties and effects on cellular oxidative markers in human HepG2 cell line. Food Chem Tox. 50:2886–2893.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 26:1231–1237.
  • Rosensweig C, Ono K, Murakami K, Lowenstein DK, Bitan G, Teplow DB. 2012. Preparation of stable amyloid β-protein oligomers of defined assembly order. In: Sigurdsson E, Calero M, Gasset M, editors. Amyloid proteins. Methods in molecular biology (Methods and Protocols). New York: Humana Press; p. 23–31.
  • Shanmuganathan B, Malar DS, Sathya S, Devi KP. 2015. Antiaggregation potential of Padina gymnospora against the toxic Alzheimer’s β-amyloid peptide 25-35 and cholinesterase inhibitory property of its bioactive compounds. PloS One. 10:e0141708–14.
  • Shanmuganathan B, Pandima Devi K. 2016. Evaluation of the nutritional profile and antioxidant and anti-cholinesterase activities of Padina gymnospora (Phaeophyceae). European Journal of Phycology. 51(4):482–490.
  • Shanmuganathan B, Suryanarayanan V, Sathya S, Narenkumar M, Singh SK, Ruckmani K, Devi KP. 2018. Anti-amyloidogenic and anti-apoptotic effect of α-bisabolol against Aβ induced neurotoxicity in PC12 cells. European J Med Chem. 143:1196–1207.
  • Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. 2016. Overview of Alzheimer’s disease and some therapeutic approaches targeting Aβ by using several synthetic and herbal compounds. Oxid Med Cell Long. 2016:7361613.
  • Suganthy N, Devi PK. 2016. In vitro antioxidant and anti-cholinesterase activities of Rhizophora mucronata. Pharm Biol. 54:118–129.
  • Syad AN, Devi KP. 2015. Assessment of anti-amyloidogenic activity of marine red alga G. acerosa against Alzheimer’s β-amyloid peptide 25-35. Neurol Res. 37:14–22.
  • Tatsimo SJN, de Dieu Tamokou J, Havyarimana L, Csupor D, Forgo P, Hohmann J, Kuiate JR, Tane P. 2012. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res Notes. 5:1–6.
  • Vauzour D. 2012. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev. 2012:914273.
  • Viau CM, Moura DJ, Pflüger P, Facundo VA, Saffi J. 2016. Structural aspects of antioxidant and genotoxic activities of two flavonoids obtained from ethanolic extract of Combretum leprosum. Evidence-Based Comp Alt Med. 2016:9849134.
  • Yang EJ, Mahmood U, Kim H, Choi M, Choi Y, Lee JP, Cho JY, Hyun JW, Kim YS, Chang MJ, et al. 2018. Phloroglucinol ameliorates cognitive impairments by reducing the amyloid β peptide burden and pro-inflammatory cytokines in the hippocampus of 5XFAD mice. Free Radic Biol Med. 126:221–234.
  • Zhao Y, Zhao B. 2013. Oxidative stress and the pathogenesis of Alzheimer's disease. Oxidative. Med Cell Longev. 2013:316523.