2,287
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Acute enhancing effect of a standardized extract of Centella asiatica (ECa 233) on synaptic plasticity: an investigation via hippocampal long-term potentiation

, , , &
Pages 365-372 | Received 08 Nov 2020, Accepted 16 Feb 2021, Published online: 31 Mar 2021

References

  • Anukunwithaya T, Tantisira MH, Shimada T, Sai Y, Khemawoot P. 2017a. Multiple oral dosing pharmacokinetics of standardized extract of Centella asiatica ECa 233 and its inductive effect on efflux transporters in rats. PMIO. 4(02):e66–e73.
  • Anukunwithaya T, Tantisira MH, Tantisira B, Khemawoot P. 2017b. Pharmacokinetics of a standardized extract of Centella asiatica ECa 233 in rats. Planta Med. 83(8):710–717.
  • Ar Rochmah M, Harini IM, Septyaningtrias DE, Sari DCR, Susilowati R. 2019. Centella asiatica prevents increase of hippocampal tumor necrosis factor-α independently of its effect on brain-derived neurotrophic factor in rat model of chronic stress. Biomed Res Int. 2019:2649281.
  • Awad R, Levac D, Cybulska P, Merali Z, Trudeau VL, Arnason JT. 2007. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system. Can J Physiol Pharmacol. 85(9):933–942.
  • Binti Mohd Yusuf Yeo NA, Muthuraju S, Wong JH, Mohammed FR, Senik MH, Zhang J, Yusof SR, Jaafar H, Adenan ML, Mohamad H, et al. 2018. Hippocampal amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid GluA1 (AMPA GluA1) receptor subunit involves in learning and memory improvement following treatment with Centella asiatica extract in adolescent rats. Brain Behav. 8(9):e01093.
  • Boondam Y, Songvut P, Tantisira MH, Tapechum S, Tilokskulchai K, Pakaprot N. 2019. Inverted U-shaped response of a standardized extract of Centella asiatica (ECa 233) on memory enhancement. Sci Rep. 9(1):8404.
  • Bramham CR, Messaoudi E. 2005. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol. 76(2):99–125.
  • Chaisawang P, Sirichoat A, Chaijaroonkhanarak W, Pannangrong W, Sripanidkulchai B, Wigmore P, Welbat JU. 2017. Asiatic acid protects against cognitive deficits and reductions in cell proliferation and survival in the rat hippocampus caused by 5-fluorouracil chemotherapy. PLoS One. 12(7):e0180650.
  • Clopath C. 2012. Synaptic consolidation: an approach to long-term learning. Cogn Neurodyn. 6(3):251–257.
  • del Cerro S, Jung M, Lynch G. 1992. Benzodiazepines block long-term potentiation in slices of hippocampus and piriform cortex. Neuroscience. 49(1):1–6.
  • Gray NE, Zweig JA, Caruso M, Martin MD, Zhu JY, Quinn JF, Soumyanath A. 2018. Centella asiatica increases hippocampal synaptic density and improves memory and executive function in aged mice. Brain Behav. 8(7):e01024.
  • Hölscher C. 1999. Synaptic plasticity and learning and memory: LTP and beyond. J Neurosci Res. 58(1):62–75.
  • Kang H, Welcher AA, Shelton D, Schuman EM. 1997. Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron. 19(3):653–664.
  • Khemawoot P, Hengjumrut P, Anukunwithaya T, Chang LC, Wongwiwatthananukit S, Tantisira MH. 2018. Comparison of the pharmacokinetic profiles of a standardized extract of Centella asiatica and A mixture of madecassoside and asiaticoside in rats. Planta Med Int Open. 5(02):e39–e47.
  • Lin Y, Skeberdis VA, Francesconi A, Bennett MV, Zukin RS. 2004. Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J Neurosci. 24(45):10138–10148.
  • Lu CW, Lin TY, Wang SJ, Huang SK. 2019. Asiatic acid, an active substance of Centella asiatica, presynaptically depresses glutamate release in the rat hippocampus. Eur J Pharmacol. 865:172781
  • Luo L, Liu XL, Mu RH, Wu YJ, Liu BB, Geng D, Liu Q, Yi LT. 2015. Hippocampal BDNF signaling restored with chronic asiaticoside treatment in depression-like mice. Brain Res Bull. 114:62–69.
  • Mook-Jung I, Shin JE, Yun SH, Huh K, Koh JY, Park HK, Jew SS, Jung MW. 1999. Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J Neurosci Res. 58(3):417–425.
  • Nalinratana N, Meksuriyen D, Ongpipattanakul B. 2018. Differences in neuritogenic activity and signaling activation of madecassoside, asiaticoside, and their aglycones in neuro-2a cells. Planta Med. 84(16):1165–1173.
  • Nasir MN, Habsah M, Zamzuri I, Rammes G, Hasnan J, Abdullah J. 2011. Effects of asiatic acid on passive and active avoidance task in male Spraque-Dawley rats. J Ethnopharmacol. 134(2):203–209.
  • Puttarak P, Dilokthornsakul P, Saokaew S, Dhippayom T, Kongkaew C, Sruamsiri R, Chuthaputti A, Chaiyakunapruk N. 2017. Effects of Centella asiatica (L.) Urb. on cognitive function and mood related outcomes: a systematic review and meta-analysis. Sci Rep. 7(1):10646.
  • Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 57(1):1–24.
  • Sirichoat A, Chaijaroonkhanarak W, Prachaney P, Pannangrong W, Leksomboon R, Chaichun A, Wigmore P, Welbat JU. 2015. Effects of Asiatic acid on spatial working memory and cell proliferation in the adult rat hippocampus. Nutrients. 7(10):8413–8423.
  • Songvut P, Chariyavilaskul P, Tantisira MH, Khemawoot P. 2019. Safety and pharmacokinetics of standardized extract of Centella asiatica (ECa 233) capsules in healthy Thai volunteers: a phase 1 clinical study. Planta Med. 85(6):483–490.
  • Soumyanath A, Zhong YP, Henson E, Wadsworth T, Bishop J, Gold BG, Quinn JF. 2012. Centella asiatica extract improves behavioral deficits in a mouse model of Alzheimer’s Disease: investigation of a possible mechanism of action. Int J Alzheimers Dis. 2012:381974.
  • Sweatt JD. 2010. Chapter 7. Long-term potentiation – a candidate cellular mechanism for information storage in the central nervous system. In: Sweatt JD, editor. Mechanisms of memory. 2nd ed. London: Academic Press; p. 150–189.
  • Tabassum R, Vaibhav K, Shrivastava P, Khan A, Ejaz Ahmed M, Javed H, Islam F, Ahmad S, Saeed Siddiqui M, Safhi MM, et al. 2013. Centella asiatica attenuates the neurobehavioral, neurochemical and histological changes in transient focal middle cerebral artery occlusion rats. Neurol Sci. 34(6):925–933.
  • Teerapattarakan N, Benya-Aphikul H, Tansawat R, Wanakhachornkrai O, Tantisira MH, Rodsiri R. 2018. Neuroprotective effect of a standardized extract of Centella asiatica ECa233 in rotenone-induced parkinsonism rats. Phytomedicine. 44:65–73.
  • Tsien JZ. 2012. Chapter 56. Learning and memory. In: Brady ST, Siegel GJ, Albers RW. et al., editors. Basic neurochemistry. 8th ed. New York: Academic Press; p. 963–981.
  • Wanakhachornkrai O, Pongrakhananon V, Chunhacha P, Wanasuntronwong A, Vattanajun A, Tantisira B, Chanvorachote P, Tantisira MH. 2013. Neuritogenic effect of standardized extract of Centella asiatica ECa233 on human neuroblastoma cells. BMC Complement Altern Med. 13:204.
  • Wanasuntronwong A, Tantisira MH, Tantisira B, Watanabe H. 2012. Anxiolytic effects of standardized extract of Centella asiatica (ECa 233) after chronic immobilization stress in mice. J Ethnopharmacol. 143(2):579–585.
  • Wijeweera P, Arnason JT, Koszycki D, Merali Z. 2006. Evaluation of anxiolytic properties of Gotukola-(Centella asiatica) extracts and asiaticoside in rat behavioral models. Phytomedicine. 13(9–10):668–676.
  • Yin Z, Yu H, Chen S, Ma C, Ma X, Xu L, Ma Z, Qu R, Ma S. 2015. Asiaticoside attenuates diabetes-induced cognition deficits by regulating PI3K/Akt/NF-κB pathway. Behav Brain Res. 292:288–299.