10,641
Views
44
CrossRef citations to date
0
Altmetric
Review Article

Possible therapeutic effects of Nigella sativa and its thymoquinone on COVID-19

ORCID Icon, &
Pages 694-701 | Received 31 Jul 2020, Accepted 11 May 2021, Published online: 10 Jun 2021

References

  • Abbas AT, Abdel-Aziz MM, Zalata K, Abd A-G-D. 2004. Effect of dexamethasone and Nigella sativa on peripheral blood eosinophil count, IgG1 and IgG2a, cytokine profiles and lung inflammation in murine model of allergic asthma. Egypt J Immunol. 12:95–102.
  • Abdelli I, Hassani F, Bekkel Brikci S, Ghalem S. 2020. In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria. J Biomol Struct Dynam. 2020:1–4.
  • Abulfadl Y, El-Maraghy N, Ahmed AE, Nofal S, Abdel-Mottaleb Y, Badary O. 2018. Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signaling. Hum Exp Toxicol. 37(10):1092–1104.
  • Ahmad S, Abbasi HW, Shahid S, Gul S, Abbasi SW. 2020. Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment. J Biomol Struct Dynam. DOI:10.1080/07391102.2020.1775129.
  • Ali B, Blunden G. 2003. Pharmacological and toxicological properties of Nigella sativa. Phytother Res. 17:299–305.
  • Asif M, Saleem M, Saadullah M, Yaseen HS, Al Zarzour R. 2020. COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology. 28(5):1153–1159.
  • Badr G, Alwasel S, Ebaid H, Mohany M, Alhazza I. 2011. Perinatal supplementation with thymoquinone improves diabetic complications and T cell immune responses in rat offspring. Cell Immunol. 267:133–140.
  • Barakat EMF, El Wakeel LM, Hagag RS. 2013. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J Gastroenterol. 19:2529–2536.
  • Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Sadeghnia HR, Khazaei M. 2017. The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine. 96:173–184.
  • Bashir A, Arfat Y, Rasheed M, Iftikhar S, Aziz RS, Rana M, Rashid M. 2020. Thymoquinone and bronchodilation: the possible mechanism and therapeutic potential of an emerging natural drug in reactive airway disease. Issu Biol Sci Pharm Res. 8:1–19.
  • Bordoni L, Fedeli D, Nasuti C, Maggi F, Papa F, Wabitsch M, De Caterina R, Gabbianelli R. 2019. Antioxidant and anti-inflammatory properties of Nigella sativa oil in human pre-adipocytes. Antioxidants. 8(2):12–51.
  • Boskabady M, Mohsenpoor N, Takaloo L. 2010. Antiasthmatic effect of Nigella sativa in airways of asthmatic patients. Phytomedicine. 17(10):707–713.
  • Boskabady MH, Farhadi J. 2008. The possible prophylactic effect of Nigella sativa seed aqueous extract on respiratory symptoms and pulmonary function tests on chemical war victims: a randomized, double-blind, placebo-controlled trial. J Alternat Complement Med. 14(9):1137–1144.
  • Boskabady MH, Javan H, Sajady M, Rakhshandeh H. 2007. The possible prophylactic effect of Nigella sativa seed extract in asthmatic patients. Fundam Clin Pharmacol. 21(5):559–566.
  • Boskabady M-H, Keyhanmanesh R, Khameneh S, Doostdar Y, Khakzad M-R. 2011. Potential immunomodulation effect of the extract of Nigella sativa on ovalbumin sensitized guinea pigs. J Zhejiang Univ Sci B. 12(3):201–209.
  • Boskabady MH, Vahedi N, Amery S, Khakzad MR. 2011. The effect of Nigella sativa alone, and in combination with dexamethasone, on tracheal muscle responsiveness and lung inflammation in sulfur mustard exposed guinea pigs. J Ethnopharmacol. 137(2):1028–1034.
  • Bouchentouf S, Missoum N. 2020. Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel Coronasvirus (COVID-19): Molecular docking study. Preprints.
  • Büyüköztürk S, Gelincik A, Özşeker F, Genç S, Şavran FO, Kıran B, Yıllar G, Erden S, Aydın F, Çolakoğlu B, et al. 2005. Nigella sativa (black seed) oil does not affect the T-helper 1 and T-helper 2 type cytokine production from splenic mononuclear cells in allergen sensitized mice. J Ethnopharmacol. 100:295–298.
  • Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP, Kelvin DJ. 2008. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 133:13–19.
  • Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA. 2009. Anti‐inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB. 11:373–381.
  • Cox RJ, Brokstad KA. 2020. Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nat Rev Immunol. 20:581–582.
  • Das I, Chakrabarty R, Das S. 2004. Saffron can prevent chemically induced skin carcinogenesis in Swiss albino mice. Asian Pac J Cancer Prev. 5:70–76.
  • Dinarello CA. 2007. Historical insights into cytokines. Eur J Immunol. 37(S1):S34–S45.
  • Dixon R, Dey P, Lamb C. 1983. Phytoalexins: enzymology and molecular biology. Adv Enzymol Relat Areas Mol Biol. 55:1–69.
  • Dorucu M, Colak SO, Ispir U, Altinterim B, Celayir Y. 2009. The effect of black cumin seeds, Nigella sativa, on the immune response of rainbow trout, Oncorhynchus mykiss. Mediter Aquacult J. 2(1):27–33.
  • Durmuskahya C, Ozturk M. 2013. Ethnobotanical survey of medicinal plants used for the treatment of diabetes in Manisa, Turkey. Sains Malaysia. 42:1431–1438.
  • El Gazzar M, El Mezayen R, Marecki JC, Nicolls MR, Canastar A, Dreskin SC. 2006. Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. Int Immunopharmacol. 6:1135–1142.
  • El Gazzar M, El Mezayen R, Nicolls MR, Marecki JC, Dreskin SC. 2006. Downregulation of leukotriene biosynthesis by thymoquinone attenuates airway inflammation in a mouse model of allergic asthma. Biochim Biophys Acta. 1760:1088–1095.
  • El Gazzar M. 2007. Thymoquinone suppresses in vitro production of IL-5 and IL-13 by mast cells in response to lipopolysaccharide stimulation. Inflamm Res. 56(8):345–351.
  • Elfiky AA. 2020. Natural products may interfere with SARS-CoV-2 attachment to the host cell. J Biomol Struct Dynam. 39:3194–3203. Online ahead of print.
  • Emeka LB, Emeka PM, Khan TM. 2015. Antimicrobial activity of Nigella sativa L. seed oil against multi-drug resistant Staphylococcus aureus isolated from diabetic wounds. Pak J Pharm Sci. 28:1985–1990.
  • Fan Y-Y, Huang Z-T, Li L, Wu M-H, Yu T, Koup RA, Bailer RT, Wu C-Y. 2009. Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection. Arch Virol. 154:1093–1099.
  • Farnsworth NF. 2008. The role of ethnopharmacology in drug development. Bioact Compound Plant. 735:2–21.
  • Gholamnezhad Z, Boskabady MH, Hosseini M. 2014. Effect of Nigella sativa on immune response in treadmill exercised rat. BMC Complement Alternat Med. 14:1–11.
  • Gholamnezhad Z, Rafatpanah H, Sadeghnia HR, Boskabady MH. 2015. Immunomodulatory and cytotoxic effects of Nigella sativa and thymoquinone on rat splenocytes. Food Chem Toxicol. 86:72–80.
  • Gilani AuH, Jabeen Q, Asad Ullah Khan M. 2004. A review of medicinal uses and pharmacological activities of Nigella sativa. Pak J Biol Sci. 7(4):441–445.
  • Hajhashemi V, Ghannadi A, Jafarabadi H. 2004. Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytother Res. 18(3):195–199.
  • Haq A, Abdullatif M, Lobo PI, Khabar KS, Sheth KV, Al-Sedairy ST. 1995. Nigella sativa: effect on human lymphocytes and polymorphonuclear leukocyte phagocytic activity. Immunopharmacology. 30(2):147–155.
  • Haq A, Lobo PI, Al-Tufail M, Rama NR, Al-Sedairy ST. 1999. Immunomodulatory effect of Nigella sativa proteins fractionated by ion exchange chromatography. Int J Immunopharmacol. 21(4):283–295.
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China. Lancet. 395(10223):497–506.
  • Islam MN, Hossain KS, Sarker PP, Ferdous J, Hannan MA, Rahman MM, Chu D-T, Uddin MJ. 2020. Revisiting pharmacological potentials of Nigella sativa seed: a promising option for COVID-19 prevention and cure. Phytother Res. 2020:1–16.
  • Islam N, Begum P, Ahsan T, Huque S, Ahsan M. 2004. Immunosuppressive and cytotoxic properties of Nigella sativa. Phytother Res. 18(5):395–398.
  • Jakhmola Mani R, Sehgal N, Dogra N, Saxena S, Pande Katare D. 2020. Deciphering underlying mechanism of Sars-CoV-2 infection in humans and revealing the therapeutic potential of bioactive constituents from Nigella sativa to combat COVID19: in-silico study. J Biomol Struct Dynamic. DOI:10.1080/07391102.2020.1839560.
  • Kalus U, Pruss A, Bystron J, Jurecka M, Smekalova A, Lichius JJ, Kiesewetter H. 2003. Effect of Nigella sativa (black seed) on subjective feeling in patients with allergic diseases. Phytother Res. 17(10):1209–1214.
  • Kardani AK, Fitri LE, Barlianto W, Olivianto E, Kusuma C. 2013. The effect of house dust mite immunotherapy, probiotic and Nigella sativa in the number of Th17 cell and asthma control test score. IOSR J Dent Med Sci. 6:37–47.
  • Khazdair MR. 2015. The protective effects of Nigella sativa and its constituents on induced neurotoxicity. J Toxicol. 2015:1–7. Article ID 841823
  • Khazdair MR, Anaeigoudari A, Hashemzehi M, Mohebbati R. 2019. Neuroprotective potency of some spice herbs, a literature review. J Tradit Complement Med. 9(2):98–105.
  • Khazdair MR, Anaeigoudari A, Kianmehr M. 2019. Anti-asthmatic effects of Portulaca oleracea and its constituents, a review. J Pharmacopunct. 22:122–130.
  • Koshak AE, Koshak EA, Mobeireek AF, Badawi MA, Wali SO, Malibary HM, Atwah AF, Alhamdan MM, Almalki RA, Madani TA, et al. 2020. Nigella sativa supplementation to treat symptomatic mild COVID-19: a structured summary of a protocol for a randomised, controlled, clinical trial. Trials. 21(1):1–2.
  • Kulkarni SA, Nagarajan SK, Ramesh V, Palaniyandi V, Selvam SP, Madhavan T. 2020. Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. J Mol Struct. 1221:128823.
  • Kumar A, Choudhir G, Shukla SK, Sharma M, Tyagi P, Bhushan A, Rathore M. 2020. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J Biomol Struct Dynam. 10:1–11.
  • Levin DA, York BM. 1978. The toxicity of plant alkaloids: an ecogeographic perspective. Biochem Syst Ecol. 6(1):61–76.
  • Li G, Chen X, Xu A. 2003. Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med. 349(5):508–509.
  • Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. 2020. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 27:1–4.
  • Majdalawieh AF, Hmaidan R, Carr RI. 2010. Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J Ethnopharmacol. 131(2):268–275.
  • Malik YS, Sircar S, Bhat S, Sharun K, Dhama K, Dadar M, Tiwari R, Chaicumpa W. 2020. Emerging novel coronavirus (2019-nCoV)—current scenario, evolutionary perspective based on genome analysis and recent developments. Vet Quarter. 40:68–76.
  • Min CK, Cheon S, Ha NY, Sohn KM, Kim Y, Aigerim A, Shin HM, Choi JY, Inn KS, Kim JH, et al. 2016. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci Rep. 6(1):1–12.
  • Mohebbati R, Shafei MN, Beheshti F, Soukhtanloo M, Roshan NM, Anaeigoudari A, Parhizgar S, Hosseinian S, Khazdeir MR, Rad AK. 2017. Mixed hydroalcoholic extracts of Nigella sativa and Curcuma longa improves adriamycin-induced renal injury in rat. Saudi J Kidney Dis Transplant. 28:1270–1281.
  • Mohebbatia R, Khazdair MR, Karimia S, Abbasnezhadd A. 2017. Hepatoprotective effects of combination hydroalcoholic extracts of Nigella sativa and Curcuma longa on adriamycin-induced oxidative stress in rat. J Rep Pharm Sci. 6:93–102.
  • Mohebbatia R, Khazdairb MR, Hedayatia M. 2017. Neuroprotective effects of medicinal plants and their constituents on different induced neurotoxicity methods: a review. J Rep Pharm Sci. 6:34–50.
  • Mohideen AKS. 2021. Molecular docking analysis of phytochemical thymoquinone as a therapeutic agent on SARS-Cov-2 envelope protein. Biointerface Res Appl Chem. 11:8389–8401.
  • Mokhtari-Zaer A, Norouzi F, Askari VR, Khazdair MR, Roshan NM, Boskabady M, Hosseini M, Boskabady MH. 2020. The protective effect of Nigella sativa extract on lung inflammation and oxidative stress induced by lipopolysaccharide in rats. J Ethnopharmacol. 253:112653.
  • Nasir A, Siddiqui M, Mohsin M. 2014. Therapeutic uses of shoneez (Nigella sativa Linn.) mentioned in Unani system of medicine-a review. Int J Pharm Phytopharmacol Res. 4:47–49.
  • Newman DJ, Cragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 75(3):311–335.
  • Noor NA, Fahmy HM, Mohammed FF, Elsayed AA, Radwan NM. 2015. Nigella sativa ameliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats. Int J Clin Exp Pathol. 8:6269.
  • Phillipson JD. 2001. Phytochemistry and medicinal plants. Phytochemistry. 56(3):237–243.
  • Rahman MT. 2020. Potential benefits of combination of Nigella sativa and Zn supplements to treat COVID-19. J Herb Med. 23:100382.
  • Rana Keyhanmanesh LP, Omrani H, Mirzamohammadi Z, Shahbazfar AA. 2014. The effect of single dose of thymoquinone, the main constituents of Nigella sativa, in guinea pig model of asthma. BioImpacts: BI. 4:75–81.
  • Roxas M, Jurenka J. 2007. Colds and influenza: a review of diagnosis and conventional, botanical, and nutritional considerations. Alternat Med Rev. 12:25–49.
  • Salem ML, Hossain MS. 2000. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int J Immunopharmacol. 22(9):729–740.
  • Salem ML. 2005. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int Immunopharmacol. 5(13–14):1749–1770.
  • Sekiou O, Bouziane I, Bouslama Z, Djemel A. 2020. In-silico identification of potent inhibitors of COVID-19 main protease (Mpro) and angiotensin converting enzyme 2 (ACE2) from natural products: quercetin, hispidulin, and cirsimaritin exhibited better potential inhibition than hydroxy-chloroquine against COVID-19 main protease active site and ACE2. ChemRxiv. 12181404:v1
  • Sethi G, Ahn KS, Aggarwal BB. 2008. Targeting nuclear factor-κB activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res. 6:1059–1070.
  • Shanmugaraj B, Malla A, Phoolcharoen W. 2020. Emergence of novel coronavirus 2019-nCoV: need for rapid vaccine and biologics development. Pathogens. 9(2):110–148.
  • Steinke JW, Borish L. 2001. Th2 cytokines and asthma—interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res. 2(2):66–70.
  • Su D-L, Lu Z-M, Shen M-N, Li X, Sun L-Y. 2012. Roles of pro-and anti-inflammatory cytokines in the pathogenesis of SLE. BioMed Res Int. 2012:1–15.
  • Tembhurne S, Feroz S, More B, Sakarkar D. 2014. A review on therapeutic potential of Nigella sativa (kalonji) seeds. J Med Plants Res. 8(3):167–177.
  • Umar S, Shah MA, Munir MT, Yaqoob M, Fiaz M, Anjum S, Kaboudi K, Bouzouaia M, Younus M, Nisa Q, et al. 2016. Synergistic effects of thymoquinone and curcumin on immune response and anti-viral activity against avian influenza virus (H9N2) in turkeys. Poult Sci. 95:1513–1520.
  • Vanderlugt CL, Miller SD. 2002. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol. 2:85–95.
  • Wu D, Meydani M, Leka LS, Nightingale Z, Handelman GJ, Blumberg JB, Meydani SN. 1999. Effect of dietary supplementation with black currant seed oil on the immune response of healthy elderly subjects. Am J Clin Nutr. 70:536–543.
  • Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al. 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 8(4):420–422.
  • Xuan NT, Shumilina E, Qadri SM, Götz F, Lang F. 2010. Effect of thymoquinone on mouse dendritic cells. Cell Physiol Biochem. 25:307–314.
  • Zhao J, Li K, Wohlford-Lenane C, Agnihothram SS, Fett C, Zhao J, Gale MJ, Baric RS, Enjuanes L, Gallagher T, et al. 2014. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci. 111:4970–4975.