1,913
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Cucumis sativus extract elicits chloride secretion by stimulation of the intestinal TMEM16A ion channel

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 1006-1013 | Received 01 Dec 2020, Accepted 25 Jun 2021, Published online: 06 Aug 2021

References

  • Aoun J, Hayashi M, Sheikh IA, Sarkar P, Saha T, Ghosh P, Bhowmick R, Ghosh D, Chatterjee T, Chakrabarti P, et al. 2016. Anoctamin 6 contributes to Cl- secretion in accessory cholera enterotoxin (Ace)-stimulated diarrhea: an essential role for phosphatidylinositol 4,5-bisphosphate (PIP2) signaling in cholera. J Biol Chem. 291(52):26816–26836.
  • Begenisich T, Melvin JE. 1998. Regulation of chloride channels in secretory Epithelia. J Membr Biol. 163(2):77–85.
  • Boat TF, Welsh MJ, Beaudet AL. 1989. The metabolic and molecular bases of inherited disease. In: Cystic fibrosis in the metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill; p. 2649–2680.
  • Callamaras N, Parker I. 2000. Ca2+-dependent activation of Cl- currents in Xenopus oocytes is modulated by voltage. Am J Physiol Cell Physiol. 278(4):C667–C675.
  • Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Moran OZ, Galietta LJV. 2008. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 322(5901):590–594.
  • Chen H, Ordög T, Chen J, Young DL, Bardsley MR, Redelman D, Ward SM, Sanders KM. 2007. Differential gene expression in functional classes of interstitial cells of Cajal in murine small intestine. Physiol Genomics. 31(3):492–509.
  • Flores CA, Cid LP, Sepúlveda FV, Niemeyer MI. 2009. TMEM16 proteins: the long-awaited calcium-activated chloride channels? Braz J Med Biol Res. 42(11):993–1001.
  • Forrest AS, Joyce TC, Huebner ML, Ayon RJ, Wiwchar M, Joyce J, Freitas N, Davis AJ, Ye L, Duan DD, et al. 2012. Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension. Am J Physiol Cell Physiol. 303(12):C1229–C1243.
  • Frizzell RA, Welsh MJ, Smith PL. 1981. Electrophysiology of chloride-secreting epithelia. Soc Gen Physiol Ser. 36:137–145.
  • Gill NS, Bajwa J, Sharma P, Dhiman K, Sood S, Sharma PD, Singh B, Bali M. 2010. Evaluation of antioxidant and antiulcer activity of traditionally consumed Cucumis melo seeds. J Pharmacol Toxicol. 6(1):82–89.
  • Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, Rijn MVD, West RB, Sarr MG, Kendrick ML, et al. 2009. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 296(6):G1370–G1381.
  • Gry J, Saborg I, Christer Anderson H. 2006. Cucurbitacins in plant food. TemaNord: 556. Copenhagen: Nordic Council of Ministers. ISBN 92-893-1381-1.
  • Hoque KM, Woodward OM, van Rossum DB, Zachos NC, Chen L, Leung GPH, Guggino WB, Guggino SE, Tse CM. 2010. Epac1 mediates protein kinase A-independent mechanism of forskolin-activated intestinal chloride secretion. J Gen Physiol. 135(1):43–58.
  • Hwang SJ, Blair PJA, Britton FC, O'Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM. 2009. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol. 587(Pt 20):4887–4904.
  • Kim KH, Lee IS, Park JY, Kim Y, An EJ, Jang HJ. 2018. Cucurbitacin B induces hypoglycemic effect in diabetic mice by regulation of AMP-activated protein kinase alpha and glucagon-like peptide-1 via bitter taste receptor signaling. Front Pharmacol. 9:1071.
  • Kojima R, Doihara H, Nozawa K, Kawabata-Shoda E, Yokoyama T, Ito H. 2009. Characterization of two models of drug-induced constipation in mice and evaluation of mustard oil in these models. Pharmacology. 84(4):227–233.
  • Mukherjee PK, Nema NK, Maity N, Sarkar BK. 2013. Phytochemical and therapeutic potential of cucumber. Fitoterapia. 84:227–236.
  • Olivier AK, Gibson-Corley KN, Meyerholz DK. 2015. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology. Am J Physiol Gastrointest Liver Physiol. 308(6):G459–G471.
  • Ousingsawat J, Martins JR, Schreiber R, Rock JR, Harfe BD, Kunzelmann K. 2009. Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J Biol Chem. 284(42):28698–28703.
  • Patil MVK, Kandhare AD, Bhise SD. 2012. Effect of aqueous extract of Cucumis sativus Linn. fruit in ulcerative colitis in laboratory animals. Asian Pac J Trop Biomed. 2(2):S962–S969.
  • Sabharwal S. 2016. Gastrointestinal manifestations of cystic fibrosis. Gastroenterol Hepatol (NY). 12:43–47.
  • Schroeder BC, Cheng T, Jan YN, Jan LY. 2008. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 134(6):1019–1029.
  • Sheikh IA, Koley H, Chakrabarti MK, Hoque KM. 2013. The Epac1 signaling pathway regulates Cl- secretion via modulation of apical KCNN4c channels in diarrhea. J Biol Chem. 288(28):20404–20415.
  • Woodward OM, Li Y, Yu S, Greenwell P, Wodarczyk C, Boletta A, Guggino WB, Qian F. 2010. Identification of a polycystin-1 cleavage product, P100, that regulates store operated Ca2+ entry through interactions with STIM1. PLoS One. 5(8):e12305.
  • Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, et al. 2008. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 455(7217):1210–1215.
  • Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, Sanders KM. 2009. A Ca2+-activated Cl- conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol. 587(Pt 20):4905–4918.
  • Zhu X, Zhang W, Jin L, Zhang G, Yang H, Yu B. 2020. Inhibitory activities of curzerenone, curdione, furanodienone, curcumol and germacrone on Ca2+-activated chloride channels. Fitoterapia. 147:104736.