2,098
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Saponins from Panax japonicus attenuate cognitive impairment in ageing rats through regulating microglial polarisation and autophagy

, , , , , , , , & ORCID Icon show all
Pages 1115-1123 | Received 02 Feb 2021, Accepted 25 Jul 2021, Published online: 17 Aug 2021

References

  • Belarbi K, Rosi S. 2013. Modulation of adult-born neurons in the inflamed hippocampus. Front Cell Neurosci. 7:145–153.
  • Block ML, Zecca L, Hong JS. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 8(1):57–69.
  • Bussi C, Peralta RJ, Arroyo DS, Gaviglio EA, Gallea JI, Wang JM, Celej MS, Iribarren P. 2017. Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death. Sci Rep. 7:43153–43161.
  • Cadwell K. 2016. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat Rev Immunol. 16(11):661–675.
  • Carneiro LA, Travassos LH. 2013. The interplay between NLRs and autophagy in immunity and inflammation. Front Immunol. 4:361–374.
  • Cheng J, Liao Y, Dong Y, Hu H, Yang N, Kong X, Li S, Li X, Guo J, Qin L, et al. 2020. Microglial autophagy defect causes Parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy. 16(12):2193–2205.
  • Colonna M, Butovsky O. 2017. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 35:441–468.
  • Dai YW, Yuan D, Wan JZ, Zhang CC, Liu CQ, Wang T. 2014. Study on protective effect of total saponins of Panax japonicus on LPS-induced RAW264.7 cell inflammation through NF-κB pathway. Chin J Chin Mater Med. 39:2076–2080.
  • de Mattos Barbosa MG, de Andrade Silva BJ, Assis TQ, da Silva Prata RB, Ferreira H, Andrade PR, da Paixão de Oliveira JA, Sperandio da Silva GM, da Costa Nery JA, Sarno EN, Pinheiro RO. 2018. Autophagy impairment is associated with increased inflammasome activation and reversal reaction development in multibacillary leprosy. Front Immunol. 9:1223–1234.
  • Deng LL, Yuan D, Zhou ZY, Wan JZ, Zhang CC, Liu CQ, Dun YY, Zhao HX, Zhao B, Yang YJ, et al. 2017. Saponins from Panax japonicus attenuate age-related neuroinflammation via regulation of the mitogen-activated protein kinase and nuclear factor kappa B signaling pathways. Neural Regen Res. 12(11):1877–1884.
  • Fan LW, Pang Y. 2017. Dysregulation of neurogenesis by neuroinflammation: key differences in neurodevelopmental and neurological disorders. Neural Regen Res. 12(3):366–371.
  • Ferrucci L, Corsi A, Lauretani F, Bandinelli S, Bartali B, Taub DD, Guralnik JM, Longo DL. 2005. The origins of age-related proinflammatory state. Blood. 105(6):2294–2299.
  • Gammon K. 2014. Neurodegenerative disease: brain windfall. Nature. 515(7526):299–300.
  • Goldberg EL, Dixit VD. 2015. Drivers of age-related inflammation and strategies for healthspan extension. Immunol Rev. 265(1):63–74.
  • Guo H, Callaway JB, Ting JP. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 21(7):677–687.
  • Han X, Sun S, Sun Y, Song Q, Zhu J, Song N, Chen M, Sun T, Xia M, Ding J, et al. 2019. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy. 15(11):1860–1881.
  • He C, Yu Z, He Y, Xu C, Chang C, Yuan D. 2017. Purification of macroporous adsorption resin and decolorization of ion exchange resin of total saponins of Panax japonicus. Chia Tradit Herbal Drugs. 48:1146–1152.
  • He Y, She H, Zhang T, Xu H, Cheng L, Yepes M, Zhao Y, Mao Z. 2018. p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. J Cell Biol. 217(1):315–328.
  • Houtman J, Freitag K, Gimber N, Schmoranzer J, Heppner FL, Jendrach M, 2019. Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP3. Embo J. 38(4):38–49. 4.
  • Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J. 2015. Microglial and macrophage polarization—new prospects for brain repair . Nat Rev Neurol. 11(1):56–64.
  • Jin MM, Wang F, Qi D, Liu WW, Gu C, Mao CJ, Yang YP, Zhao Z, Hu LF, Liu CF. 2018. A critical role of autophagy in regulating microglia polarization in neurodegeneration. Front Aging Neurosci. 10:378–389.
  • Kim JY, Paton JC, Briles DE, Rhee DK, Pyo S. 2015. Streptococcus pneumoniae induces pyroptosis through the regulation of autophagy in murine microglia. Oncotarget. 6(42):44161–44178.
  • Lee JW, Nam H, Kim LE, Jeon Y, Min H, Ha S, Lee Y, Kim SY, Lee SJ, Kim EK, et al. 2019. TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia. Autophagy. 15(5):753–770.
  • Li D, Wang C, Yao Y, Chen L, Liu G, Zhang R, Liu Q, Shi FD, Hao J. 2016. mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type. Faseb J. 30(10):3388–3399.
  • Lutshumba J, Nikolajczyk BS, Bachstetter AD. 2021. Dysregulation of systemic immunity in aging and dementia. Front Cell Neurosci. 15:652111–652158.
  • Miron VE, Boyd A, Zhao J-W, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM, et al. 2013. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 16(9):1211–1218.
  • Munz C. 2016. Autophagy beyond intracellular MHC Class II antigen presentation. Trends Immunol. 37:755–763.
  • Nilsson CJ, Nørgaard S, Foverskov E, Bruunsgaard H, Andersen PK, Lund R. 2020. Positive and negative aspects of social relations and low-grade inflammation in Copenhagen Aging and Midlife Biobank. Eur J Ageing. 17(4):531–546.
  • Prinz M, Priller J. 2014. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 15(5):300–312.
  • Ruan B, Wang R, Yang YJ, Wang DF, Wang JW, Zhang CC, Yuan D, Zhou ZY, Wang T. 2019. Improved effects of saponins from Panax japonicus on decline of cognitive function in natural aging rats via NLRP3 inflammasome pathway. Chin J Chin Mater Med. 44:344–349. Chinese
  • Saitoh T, Akira S. 2010. Regulation of innate immune responses by autophagy-related proteins. J Cell Biol. 189(6):925–935.
  • Saxena S, Kruys V, Vamecq J, Maze M. 2021. The role of microglia in perioperative neuroinflammation and neurocognitive disorders. Front Aging Neurosci. 13:671499–671534.
  • Smith JA, Das A, Ray SK, Banik NL. 2012. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 87(1):10–20.
  • Su P, Zhang J, Wang D, Zhao F, Cao Z, Aschner M, Luo W. 2016. The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience. 319:155–167.
  • Sumpter RJ, Levine B. 2010. Autophagy and innate immunity: triggering, targeting and tuning. Semin Cell Dev Biol. 21(7):699–711.
  • Tian DS, Li CY, Qin C, Murugan M, Wu LJ, Liu JL. 2016. Deficiency in the voltage-gated proton channel Hv1 increases M2 polarization of microglia and attenuates brain damage from photothrombotic ischemic stroke. J Neurochem. 139(1):96–105.
  • Tricco AC, Soobiah C, Lillie E, Perrier L, Chen MH, Hemmelgarn B, Majumdar SR, Straus SE. 2012. Use of cognitive enhancers for mild cognitive impairment: protocol for a systematic review and network meta-analysis. Syst Rev. 1:25–34.
  • Tu H, Zhou Q, Zhang X, Wang T, Yuan CF, Zhang CC, Yuan D, Liu ZQ. 2018. Protective effects of total saponins of Panax japonicas on HepG2 cell apoptosis induced with palmitic acid. Chin J Chin Mater Med. 43:390–395.
  • Wan JZ, Wang R, Zhou ZZ, Deng LL, Zhang CC, Liu CQ, Zhao HX, Yuan CF, He YM, Dun YY, Yuan D, et al. 2020. Saponins of Panax japonicus confer neuroprotection against brain aging through mitochondria related oxidative stress and autophagy in rats. Curr Pharm Biotechnol. 21:1–14.
  • Wang H, Shen Y, Chuang H, Chiu C, Ye Y, Zhao L. 2019. Neuroinflammation in Alzheimer’s disease: microglia, molecular participants and therapeutic choices. Curr Alzheimer Res. 16(7):659–674.
  • Wang T, Di G, Yang L, Dun Y, Sun Z, Wan J, Peng B, Liu C, Xiong G, Zhang C, et al. 2015. Saponins from Panax japonicus attenuate d-galactose-induced cognitive impairment through its anti-oxidative and anti-apoptotic effects in rats. J Pharm Pharmacol. 67(9):1284–1296.
  • Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. 2021. Western diet as a trigger of Alzheimer’s disease: from metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev. 21:1568–1637.
  • Wu QS, Chen P, Zhang QW. 2016. Research progress on chemical constituents, pharmacological activities and analytical methods of Panax japonicus. Asia-Pacific Trad Med. 12:46–54.
  • Xia CY, Zhang S, Chu SF, Wang ZZ, Song XY, Zuo W, Gao Y, Yang PF, Chen NH. 2016. Autophagic flux regulates microglial phenotype according to the time of oxygen-glucose deprivation/reperfusion. Int Immunopharmacol. 39:140–148.
  • Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N. 2017. The role of autophagy in pro-inflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro. J Neurochem. 142(2):215–230.
  • Ye X, Zhu M, Che X, Wang H, Liang XJ, Wu C, Xue X, Yang J. 2020. Lipopolysaccharide induces neuroinflammation in microglia by activating the MTOR pathway and downregulating Vps34 to inhibit autophagosome formation. J Neuroinflammation. 17(1):18.
  • Yuan D, Xiang T, Huo Y, Liu C, Wang T, Zhou Z, Dun Y, Zhao H, Zhang C. 2018. Preventive effects of total saponins of Panax japonicus on fatty liver fibrosis in mice. Arch Med Sci. 14(2):396–406.
  • Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, Li B, Liu G, Cai D. 2013. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH . Nature. 497(7448):211–216.
  • Zhang Y, Kim MS, Jia B, Yan J, Zuniga-Hertz JP, Han C, Cai D. 2017. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature. 548(7665):52–57.
  • Zhou X, Zhou J, Li X, Guo C, Fang T, Chen Z. 2011. GSK-3β inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury. Biochem Biophys Res Commun. 411:271–275.
  • Zia A, Pourbagher-Shahri AM, Farkhondeh T, Samarghandian S. 2021. Molecular and cellular pathways contributing to brain aging. Behav Brain Funct. 17(1):6–36.