1,853
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Epigallocatechin gallate (EGCG) attenuates myocardial hypertrophy and fibrosis induced by transverse aortic constriction via inhibiting the Akt/mTOR pathway

, &
Pages 1303-1311 | Received 01 Jul 2020, Accepted 19 Aug 2021, Published online: 04 Oct 2021

References

  • Aoyagi T, Matsui T. 2011. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr Pharm Des. 17(18):1818–1824.
  • Caban M, Owczarek K, Chojnacka K, Lewandowska U. 2019. Overview of polyphenols and polyphenol-rich extracts as modulators of IGF-1, IGF-1R, and IGFBP expression in cancer diseases. J Fun Foods. 52:389–407.
  • Cai Y, Yu S-S, Chen T-T, Gao S, Geng B, Yu Y, Ye J-T, Liu P-Q. 2013. EGCG inhibits CTGF expression via blocking NF-κB activation in cardiac fibroblast. Phytomedicine. 20(2):106–113.
  • Chen YL, Abraham DJ, Xu SW, Pearson JD, Black CM, Lyons KM, Leask A. 2004. CCN2 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin. Mol Biol Cell. 15(12):5635–5646.
  • Chen X, Dong XS, Gao HY, Jiang YF, Jin YL, Chang YY, Chen LY, Wang JH. 2016. Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells . Mol Med Rep. 13(1):689–696.
  • Chen J, Wu J, Li L, Zou YZ, Zhu DL, Gao PJ. 2011. Effect of an acute mechanical stimulus on aortic structure in the transverse aortic constriction mouse model. Clin Exp Pharmacol Physiol. 38(9):570–576.
  • Condorelli G, Morisco C, Latronico MV, Claudio PP, Dent P, Tsichlis P, Condorelli G, Frati G, Drusco A, Croce CM, et al. 2002. TNF-alpha signal transduction in rat neonatal cardiac myocytes: definition of pathways generating from the TNF-alpha receptor. Faseb J. 16(13):1732–1737.
  • Deka A, Vita JA. 2011. Tea and cardiovascular disease. Pharmacol Res. 64(2):136–145.
  • Ellmers LJ, Scott NJ, Piuhola J, Maeda N, Smithies O, Frampton CM, Richards AM, Cameron VA. 2007. Npr1-regulated gene pathways contributing to cardiac hypertrophy and fibrosis. J Mol Endocrinol. 38(2):245–257.
  • Falcão-Pires I, Hamdani N, Borbély A, Gavina C, Schalkwijk CG, van der Velden J, van Heerebeek L, Stienen GJM, Niessen HWM, Leite-Moreira AF, et al. 2011. Diabetes mellitus worsens diastolic left ventricular dysfunction in aortic stenosis through altered myocardial structure and cardiomyocyte stiffness. Circulation. 124(10):1151–1159.
  • Frey N, Katus HA, Olson EN, Hill JA. 2004. Hypertrophy of the heart: a new therapeutic target? Circulation. 109(13):1580–1589.
  • Frey N, Olson E. 2003. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 65(1):45–79.
  • Heinzel FR, Hohendanner F, Jin G, Sedej S, Edelmann F. 2015. Myocardial hypertrophy and its role in heart failure with preserved ejection fraction. J Appl Physiol (1985)). 119(10):1233–1242.
  • Higdon JV, Frei B. 2003. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr. 43(1):89–143.
  • Ikeda M, Ide T, Fujino T, Matsuo Y, Arai S, Saku K, Kakino T, Oga Y, Nishizaki A, Sunagawa K. 2015. The Akt-mTOR axis is a pivotal regulator of eccentric hypertrophy during volume overload. Sci Rep. 5:15181–15881.
  • Lee H, Yoo YS, Lee D, Song EJ. 2013. Cholesterol induces cardiac hypertrophy by activating the AKT pathway. J Steroid Biochem Mol Biol. 138:307–313.
  • Li HL, Huang Y, Zhang CN, Liu G, Wei YS, Wang AB, Liu YQ, Hui RT, Wei CM, Williams GM, et al. 2006. Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med. 40(10):1756–1775.
  • Li C, Li X, Gao X, Zhang R, Zhang Y, Liang H, Xu C, Du W, Zhang Y, Liu X, et al. 2014. MicroRNA-328 as a regulator of cardiac hypertrophy. Int J Cardiol. 173(2):268–276.
  • Lipson Kenneth E, Carol W, Yuchin T, Spong S. 2012. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 5(S1):24–43.
  • Liu B, Yan W. 2019. Lipophilization of EGCG and effects on antioxidant activities. Food Chem. 272:663–669.
  • Liu Z-W, Zhu H-T, Chen K-L, Dong X, Wei J, Qiu C, Xue J-H. 2013. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol. 12:158–166.
  • Molkentin JD, Dorn II GW. 2001. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol. 63(1):391–426.
  • Negri A, Naponelli V, Rizzi F, Bettuzzi S. 2018. Molecular targets of epigallocatechin-gallate (EGCG): a special focus on signal transduction and cancer. Nutrients. 10:1936–1952.
  • Sergeeva IA, Christoffels VM. 2013. Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. Biochim Biophys Acta - Molecular Basis of Disease. 1832(12):2403–2413.
  • Sheng R, Gu Z-L, Xie M-L. 2013. Epigallocatechin gallate, the major component of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in cardiac hypertrophy. Int J Cardiol. 162(3):199–209.
  • Sheng R, Gu Z-l, Xie M-l, Zhou W-X, Guo C-Y. 2009. EGCG inhibits proliferation of cardiac fibroblasts in rats with cardiac hypertrophy. Planta Med. 75(2):113–120.
  • Sheng R, Gu Z, Xie M, Zhou W, Guo C. 2006. EGCG inhibition against collagen accumulation and cell proliferation in cardiac hypertrophy. Chinese Pharmacol Bull. 22:1095–2009.
  • Sheng R, Gu Z, Xie M, Zhou W, Guo C. 2007. EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats 1. Acta Pharmacol Sin. 28(2):191–201.
  • Shioi T, McMullen JR, Kang PM, Douglas PS, Obata T, Franke TF, Cantley LC, Izumo S. 2002. Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol. 22(8):2799–2809.
  • Shiojima I, Walsh K. 2006. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev. 20(24):3347–3365.
  • Sugden PH. 1999. Signaling in myocardial hypertrophy: life after calcineurin? Circ Res. 84(6):633–646.
  • Tagashira H, Bhuiyan S, Shioda N, Hasegawa H, Kanai H, Fukunaga K. 2010. Sigma1-receptor stimulation with fluvoxamine ameliorates transverse aortic constriction-induced myocardial hypertrophy and dysfunction in mice. Am J Physiol Heart Circ Physiol. 299(5):H1535–H1545.
  • Van Aller GS, Carson JD, Tang W, Peng H, Zhao L, Copeland RA, Tummino PJ, Luo L. 2011. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun. 406(2):194–199.
  • Wang J, Man GCW, Chan TH, Kwong J, Wang CC. 2018. A prodrug of green tea polyphenol (-)-epigallocatechin-3-gallate (Pro-EGCG) serves as a novel angiogenesis inhibitor in endometrial cancer. Cancer Lett. 412:10–20.
  • Weber KT, Sun Y, Tyagi SC, Cleutjens JP. 1994. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol. 26(3):279–292.
  • Yan H-J, Qi G-Q, Ma Y. 2019. Effect of propofol on myocardial ischemia-reperfusion injury through MAPK/ERK pathway. Eur Rev Med Pharmacol Sci. 23:11051–11061.
  • Yang E, Lee J, Lee S, Kim E, Moon Y, Jung Y, Park S, Cho M. 2014. EGCG attenuates autoimmune arthritis by inhibition of STAT3 and HIF-1α with Th17/Treg control. PloS One. 9(2):86–102.