1,578
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Preparing the spinal cord – priming or preconditioning? A systematic review of experimental studies

&
Article: 2166100 | Received 13 Jun 2022, Accepted 04 Jan 2023, Published online: 19 Jan 2023

References

  • Panthee N, Ono M. Spinal cord injury following thoracic and thoracoabdominal aortic repairs. Asian Cardiovasc Thorac Ann. 2015;23(2):235–246.
  • Moulakakis KG, Karaolanis G, Antonopoulos CN, et al. Open repair of thoracoabdominal aortic aneurysms in experienced centers. J Vasc Surg. 2018;68(2):634.e12–645.e12.
  • Crawford ES, Crawford JL, Safi HJ, et al. Thoracoabdominal aortic aneurysms: preoperative and intraoperative factors determining immediate and long-term results of operations in 605 patients. J Vasc Surg. 1986;3(3):389–404.
  • Katsargyris A, Oikonomou K, Kouvelos G, et al. Spinal cord ischemia after endovascular repair of thoracoabdominal aortic aneurysms with fenestrated and branched stent grafts. J Vasc Surg. 2015;62(6):1450–1456.
  • Coselli JS, Green SY, Price MD, et al. Spinal cord deficit after 1114 extent II open thoracoabdominal aortic aneurysm repairs. J Thorac Cardiovasc Surg. 2020;159(1):1–13.
  • Birmingham AL: University of Alabama at Birmingham. Spinal cord injury facts and figures at a glance. J Spinal Cord Med. 2012;35(4):197–198.
  • Etz CD, Zoli S, Mueller CS, et al. Staged repair significantly reduces paraplegia rate after extensive thoracoabdominal aortic aneurysm repair. J Thorac Cardiovasc Surg. 2010;139(6):1464–1472.
  • Etz CD, Halstead JC, Spielvogel D, et al. Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg. 2006;82(5):1670–1677.
  • Adamkiewicz A. Die blutegefässe des menschlichen rücken- markes. Sitzungsberichte Akademie Der Wissen Schaften inWein—Mathematische-Naturwissen Schaftliche Klasse— Abteilun. 1882;84:101–130.
  • Lazorthes G, Gouaze A, Zadeh JO, et al. Arterial vascularization of the spinal cord recent studies of the anastomotic substitution pathways. J Neurosurg. 1971;35(3):253–262.
  • Griepp RB, Griepp EB. Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg. 2007;83(2):S865–S869.
  • Etz CD, Kari FA, Mueller CS, et al. The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg. 2011;141(4):1020–1028.
  • Griepp EB, di Luozzo G, Schray D, et al. The anatomy of the spinal cord collateral circulation. Ann Thorac Surg. 2012;1(3):350–357.
  • Strauch JT, Spielvogel D, Lauten A, et al. Importance of extrasegmental vessels for spinal cord blood supply in a chronic porcine model. Eur J Cardiothorac Surg. 2003;24(5):817–824.
  • Etz CD, Kari FA, Mueller CS, et al. The collateral network concept: remodeling of the arterial collateral network after experimental segmental artery sacrifice. J Thorac Cardiovasc Surg. 2011;141(4):1029–1036.
  • Etz CD, Homann TM, Plestis KA, et al. Spinal cord perfusion after extensive segmental artery sacrifice: can paraplegia be prevented? Eur J Cardiothorac Surg. 2007;31(4):643–648.
  • Halstead JC, Wurm M, Etz C, et al. Preservation of spinal cord function after extensive segmental artery sacrifice: regional variations in perfusion. Ann Thorac Surg. 2007;84(3):789–794.
  • Etz CD, Homann TM, Luehr M, et al. Spinal cord blood flow and ischemic injury after experimental sacrifice of thoracic and abdominal segmental arteries. Eur J Cardiothorac Surg. 2008;33(6):1030–1038.
  • Etz CD, di Luozzo G, Zoli S, et al. Direct Spinal cord perfusion pressure monitoring in extensive distal aortic aneurysm repair. Ann Thorac Surg. 2009;87(6):1764–1774.
  • Etz CD, Zoli S, Bischoff MS, et al. Measuring the collateral network pressure to minimize paraplegia risk in thoracoabdominal aneurysm resection. J Thorac Cardiovasc Surg. 2010;140(6):S125–S130.
  • Geisbüsch S, Schray D, Bischoff MS, et al. Imaging of vascular remodeling after simulated thoracoabdominal aneurysm repair. J Thorac Cardiovasc Surg. 2012;144(6):1471–1478.
  • Simon F, Wagenhäuser MU, Busch A, et al. Arteriogenesis of the spinal cord—the network challenge. Cells. 2020;22(9):E501.
  • Meffert P, Bischoff MS, Brenner R, et al. Significance and function of different spinal collateral compartments following thoracic aortic surgery: immediate versus long-term flow compensation. Eur J Cardiothorac Surg. 2014;45(5):799–804.
  • Kari FA, Siepe M, Beyersdorf F. Porcine aortic surgical model to study isolated intraspinal collateralization. J Thorac Cardiovasc Surg. 2015;150(2):413–414.
  • Heber UM, Mayrhofer M, Gottardi R, et al. The intraspinal arterial collateral network: a new anatomical basis for understanding and preventing paraplegia during aortic repair. Eur J Cardiothorac Surg. 2021;59(1):137–144.
  • Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–1136.
  • Kitagawa K, Matsumoto M, Tagaya M, et al. “Ischemic tolerance” phenomenon found in the brain. Brain Res. 1990;528(1):21–24.
  • Przyklenk K, Bauer B, Ovize M, et al. Regional ischemic “preconditioning” protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87(3):893–899.
  • Gho BCG, Schoemaker RG, van den Doel MA, et al. Myocardial protection by brief ischemia in noncardiac tissue articles myocardial protection by brief ischemia in noncardiac tissue. Circulation. 1996;94(9):2193–2200.
  • Matsuyama K, Chiba Y, Ihaya A, et al. Effect of spinal cord preconditioning on paraplegia during cross-clamping of the thoracic aorta. Ann Thorac Surg. 1997;63(5):1315–1320.
  • Munyao N, Kaste M, Lindsberg P. Tolerization against loss of neuronal function after ischemia–reperfusion injury. NeuroReport. 1998;26(9):321–325.
  • Zoli S, Etz CD, Roder F, et al. Experimental two-stage simulated repair of extensive thoracoabdominal aneurysms reduces paraplegia risk. Ann Thorac Surg. 2010;90(3):722–729.
  • Bischoff MS, Scheumann J, Brenner RM, et al. Staged approach prevents spinal cord injury in hybrid surgical-endovascular thoracoabdominal aortic aneurysm repair: an experimental model. Ann Thorac Surg. 2011;92(1):138–146; discussion 146.
  • Luehr M, Salameh A, Haunschild J, et al. Minimally Invasive segmental artery coil embolization for preconditioning of the spinal cord collateral network before one-stage descending and thoracoabdominal aneurysm repair. Innovations. 2014;9(1):60–65.
  • Etz CD, Debus ES, Mohr FW, et al. First-in-man endovascular preconditioning of the paraspinal collateral network by segmental artery coil embolization to prevent ischemic spinal cord injury. J Thorac Cardiovasc Surg. 2015;149(4):1074–1079.
  • von Aspern K, Haunschild J, Simoniuk U, et al. Optimal occlusion pattern for minimally invasive staged segmental artery coil embolization in a chronic porcine model. Eur J Cardiothorac Surg. 2019;56(1):126–134.
  • Geisbüsch S, Stefanovic A, Koruth JS, et al. Endovascular coil embolization of segmental arteries prevents paraplegia after subsequent thoracoabdominal aneurysm repair: an experimental model. J Thorac Cardiovasc Surg. 2014;147(1):220–226.
  • Fujimaki Y, Kawahara N, Tomita K, et al. How many ligations of bilateral segmental arteries cause ischemic spinal cord dysfunction? An experimental study using a dog model. Spine. 2016;31(21):781–789.
  • Kato S, Kawahara N, Tomita K, et al. Effects on spinal cord blood flow and neurologic function secondary to interruption of bilateral segmental arteries which supply the artery of Adamkiewicz an experimental study using a dog model. Spine. 2008;33(14):1533–1541.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
  • Page MJ, McKenzie JE, Bossuyt PM, et al. Mapping of reporting guidance for systematic reviews and meta-analyses generated a comprehensive item bank for future reporting guidelines. J Clin Epidemiol. 2020;118:60–68.
  • Haapanen H, Herajärvi J, Honkanen HP, et al. Immunohistochemical analysis of the spinal cord ischemia– effect of remote ischemic preconditioning in a porcine model. HSF. 2018;21(3):E209–E214.
  • Lewis ER, Geisbüsch S, Chang YJ, et al. Paraspinous muscle gene expression profiling following simulated staged endovascular repair of thoracoabdominal aortic aneurysm: exploring potential therapeutic pathways. Eur J Cardiothorac Surg. 2020;57(1):30–38.
  • Sakurai M, Hayashi T, Abe K, et al. Enhancement of heat shock protein expression after transient ischemia in the preconditioned spinal cord of rabbits. J Vasc Surg. 1998;27(4):720–725.
  • Zvara D, Colonna D, Deal D, et al. Ischemic preconditioning reduces neurologic injury in a rat model of spinal cord ischemia. Ann Thorac Surg. 1999;68(3):874–880.
  • Fan T, Wang C-C, Wang F-M, et al. Experimental study of the protection of ischemic preconditioning to spinal cord ischemia. Surg Neurol. 1999;52(3):299–305.
  • Abraham VS, Swain JA, Forgash AJ, et al. Ischemic preconditioning protects against paraplegia after transient aortic occlusion in the rat. Ann Thorac Surg. 2000;69(2):475–479.
  • de Haan P, Vanicky I, Jacobs MJHM, et al. Effect of ischemic pretreatment on heat shock protein 72, neurologic outcome, and histopathologic outcome in a rabbit model of spinal cord ischemia. J Thorac Cardiovasc Surg. 2000;120(3):513–519.
  • Matsumoto M, Ohtake K, Wakamatsu H, et al. The Time course of acquisition of ischemic tolerance and induction of heat shock protein 70 after a brief period of ischemia in the spinal cord in rabbits. Anesth Analg. 2001;92(2):418–423.
  • Ueno T, Chao Z-L, Okazaki Y, et al. The impact of ischaemic preconditioning on spinal cord blood flow and paraplegia. Cardiovasc Surg. 2001;9(6):575–579.
  • Şirin BH, Ragip O, Mustafa C, et al. Ischaemic preconditioning reduces spinal cord injury in transient ischaemia. Acta Cardiologica. 2002;57(4):279–285.
  • Toumpoulis IK, Anagnostopoulos CE, Drossos GE, et al. Does ischemic preconditioning reduce spinal cord injury because of descending thoracic aortic occlusion? J Vasc Surg. 2003;37(2):426–432.
  • Toumpoulis IK, Anagnostopoulos CE, Drossos GE, et al. Early ischemic preconditioning without hypotension prevents spinal cord injury caused by descending thoracic aortic occlusion. J Thorac Cardiovasc Surg. 2003;125(5):1030–1036.
  • Kakimoto M, Kawaguchi M, Sakamoto T, et al. Evaluation of rapid ischemic preconditioning in a rabbit model of spinal cord ischemia. Anesthesiology. 2003;99(5):1112–1117.
  • Orendáčová J, Račeková E, Kuchárová K, et al. Ependyma as a possible morphological basis of ischemic preconditioning tolerance in rat spinal cord ischemia model: nestin and Fluoro-Jade B observations. Cell Mol Neurobiol. 2004;24(3):477–489.
  • Zvara D, Zboyovski JM, Deal DD, et al. Spinal cord blood flow after ischemic preconditioning in a rat model of spinal cord ischemia. Sci World J. 2004;22(4):892–898.
  • Cizkova D, Carmel JB, Yamamoto K, et al. Characterization of spinal HSP72 induction and development of ischemic tolerance after spinal ischemia in rats. Exp Neurol. 2004;185(1):97–108.
  • Toumpoulis IK, Papakostas JC, Matsagas MI, et al. Superiority of early relative to late ischemic preconditioning in spinal cord protection after descending thoracic aortic occlusion. J Thorac Cardiovasc Surg. 2004;128(5):724–730.
  • Orendáčová J, Ondrejčák T, Kuchárová K, et al. Fluoro-Jade B evidence of induced ischemic tolerance in the rat spinal cord ischemia: physiological, neurological and histopathological consequences. Gen Physiol Biophys. 2005;24(1):75–87.
  • Contreras ISB, Moreira LFP, Ballester G, et al. Immediate ischemic preconditioning based on somatosensory evoked potentials seems to prevent spinal cord injury following descending thoracic aorta cross-clamping. Eur J Cardiothorac Surg. 2005;28(2):274–279.
  • Yu QJ, Wang YL, Zhou QS, et al. Effect of repetitive ischemic preconditioning on spinal cord ischemia in a rabbit model. Life Sci. 2006;79(15):1479–1483.
  • Assumpção De Mônaco B, Benício A, Salvador I, et al. Ischemic preconditioning and spinal cord function monitoring in the descending thoracic aorta approach. Arq Bras Cardiol. 2007;88(3):291–296.
  • Lee J-S, Hong J-M, Kim Y-J. Ischemic preconditioning to prevent lethal ischemic spinal cord injury in a swine model. J Invest Surg. 2008;21(4):209–214.
  • Yang C, Ren Y, Liu F, et al. Ischemic preconditioning suppresses apoptosis of rabbit spinal neurocytes by inhibiting ASK1-14-3-3 dissociation. Neurosci Lett. 2008;441(3):267–271.
  • Radoňak J, Čížková D, Lukáčová N, et al. Preconditioning as a possible protective mechanism in the spinal cord ischemia. Acta Vet Brno. 2009;78(2):307–311.
  • Ozkokeli M, Es MU, Filizcan U, et al. Rapid ischemic preconditioning with a short reperfusion time prevents delayed paraplegia in a rabbit model. Heart Surg Forum. 2011;14(5):E317–E321.
  • Liang CL, Lu K, Liliang PC, et al. Ischemic preconditioning ameliorates spinal cord ischemia-reperfusion injury by triggering autoregulation. J Vasc Surg. 2012;55(4):1116–1123.
  • Kyrou IE, Papakostas JC, Ioachim E, et al. Early ischaemic preconditioning of spinal cord enhanced the binding profile of heat shock protein 70 with neurofilaments and promoted its nuclear translocation after thoraco-abdominal aortic occlusion in pigs. Eur J Cardiothorac Surg. 2012;43(4):408–414.
  • Kyrou IE, Papakostas JC, Ioachim E, et al. Spinal cord early ischemic preconditioning activates the stabilized fraction of β-catenin after thoracoabdominal aortic occlusion in pigs. Ann Vasc Surg. 2013;27(4):480–486.
  • Fang B, Li XM, Sun XJ, et al. Ischemic preconditioning protects against spinal cord ischemia-reperfusion injury in rabbits by attenuating blood spinal cord barrier disruption. Int J Mol Sci. 2013;14(5):10343–10354.
  • Fan J, Zhang Z, Chao X, et al. Ischemic preconditioning enhances autophagy but suppresses autophagic cell death in rat spinal neurons following ischemia-reperfusion. Brain Res. 2014;1562:76–86.
  • Ueno K, Samura M, Nakamura T, et al. Increased plasma VEGF levels following ischemic preconditioning are associated with downregulation of miRNA-762 and miR-3072-5p. Sci Rep. 2016;6(6):36758.
  • Li Z, Gao C, Yu H, et al. Ischemic preconditioning protects motor neurons against ischemic injury by inducing endoplasmic reticulum stress, upregulating GRP78 and inhibiting caspase-12 activation. Int J Clin Exp Med. 2017;10(10):14359–14367.
  • Selimoglu O, Ugurlucan M, Basaran M, et al. Efficacy of remote ischaemic preconditioning for spinal cord protection against ischaemic injury: association with heat shock protein expression spinal cord protection by remote ischaemic preconditioning. Folia Neuropathol. 2008;46(3):204–212.
  • Su B, Dong H, Ma R, et al. Cannabinoid 1 receptor mediation of spinal cord ischemic tolerance induced by limb remote ischemia preconditioning in rats. J Thorac Cardiovasc Surg. 2009;138(6):1409–1416.
  • Dong H-L, Zhang Y, Su B-X, et al. Limb remote ischemic preconditioning protects the spinal cord from ischemia-reperfusion injury a newly identified nonneuronal but reactive oxygen species-dependent pathway. Anesthesiology. 2010;112(4):881–891.
  • Haapanen H, Herajärvi J, Arvola O, et al. Remote ischemic preconditioning protects the spinal cord against ischemic insult: an experimental study in a porcine model. J Thorac Cardiovasc Surg. 2016;151(3):777–785.
  • Herajärvi J, Anttila T, Sarja H, et al. Exploring spinal cord protection by remote ischemic preconditioning: an experimental study. Ann Thorac Surg. 2017;103(3):804–811.
  • Jing N, Fang B, Wang ZL, et al. Remote ischemia preconditioning attenuates blood-spinal cord barrier breakdown in rats undergoing spinal cord ischemia reperfusion injury: associated with activation and upregulation of CB1 and CB2 receptors. Cell Physiol Biochem. 2017;43(6):2516–2524.
  • Karimipour M, Farjah GH, Molazadeh F, et al. Protective effect of contralateral, ipsilateral, and bilateral remote ischemic preconditioning on spinal cord ischemia reperfusion injury in rats. Turk Neurosurg. 2019;29(6):933–939.
  • Bashir SO, Morsy MD, El Agamy DF. Two episodes of remote ischemia preconditioning improve motor and sensory function of hind limbs after spinal cord ischemic injury. J Spinal Cord Med. 2020;43(6):878–887.
  • Mukai A, Suehiro K. Protective effects of remote ischemic preconditioning against spinal cord ischemia-reperfusion injury in rats. J Thorac Cardiovasc Surg. 2020;11:e137–e156.
  • Honkanen H-P, Mustonen C, Herajärvi J, et al. Remote ischemic preconditioning in spinal cord protection: a surviving porcine study. Semin Thorac Cardiovasc Surg. 2020;32(4):788–796.
  • Gurcun U, Discigil B, Boga M, et al. Is remote preconditioning as effective as direct ischemic preconditioning in preventing spinal cord ischemic injury? J Surg Res. 2006;135(2):385–393.
  • Huang H, Zhang L, Wang Y, et al. Effect of ischemic post-conditioning on spinal cord ischemic-reperfusion injury in rabbits. Can J Anaesth. 2007;54(1):42–48.
  • Jiang X, Shi E, Li L, et al. Co-application of ischemic preconditioning and postconditioning provides additive neuroprotection against spinal cord ischemia in rabbits. Life Sci. 2008;82(11-12):608–614.
  • Sapmaz A, Ulus AT, Turan NN, et al. Which type of conditioning method protects the spinal cord from the ischemia-reperfusion injury in 24 hours? Vascular. 2015;23(6):614–621.
  • Fukui T, Ishida K, Mizukami Y, et al. Comparison of the protective effects of direct ischemic preconditioning and remote ischemic preconditioning in a rabbit model of transient spinal cord ischemia. J Anesth. 2018;32(1):3–14.
  • Vacanti FX, Kwun BD. Vascular occlusion produced over 24 hours increases spinal cord tolerance to occlusion 1. J Surg Res. 1996;62(1):29–31.
  • Honkanen H-P, Mustonen C, Herajärvi J, et al. Priming protects the spinal cord in an experimental aortic occlusion model. J Thorac Cardiovasc Surg. 2022;164(3):801.e2–809.e2.
  • Kari FA, Wittmann K, Saravi B, et al. Immediate spinal cord collateral blood flow during thoracic aortic procedures: the role of epidural arcades. Semin Thorac Cardiovasc Surg. 2016;28(2):378–387.
  • Meller R, Simon RP. A critical review of mechanisms regulating remote preconditioning-induced brain protection. J Appl Physiol. 2015;119(10):1135–1142.
  • Kick J, Hauser B, Bracht H, et al. Effects of a cantaloupe melon extract/wheat gliadin biopolymer during aortic cross-clamping. Intensive Care Med. 2007;33(4):694–702.
  • Simon F, Scheuerle A, Gröger M, et al. Comparison of carbamylated erythropoietin-FC fusion protein and recombinant human erythropoietin during porcine aortic balloon occlusion-induced spinal cord ischemia/reperfusion injury. Intensive Care Med. 2011;37(9):1525–1533.
  • de Freitas S, Hicks CW, Mouton R, et al. Effects of ischemic preconditioning on abdominal aortic aneurysm repair: a systematic review and meta-analysis. J Surg Res. 2019;235:340–349.
  • Zhang M-H, Du X, Guo W, et al. Effect of remote ischemic preconditioning on complications after elective abdominal aortic aneurysm repair: a meta-analysis with randomized control trials. Vasc Endovascular Surg. 2019;53(5):387–394.
  • Buschmann I, Schaper W. Arteriogenesis versus angiogenesis: two mechanisms of vessel growth. News Physiol Sci. 1999;14(Jun):121–125.
  • Heil M, Eitenmüller I, Schmitz-Rixen T, et al. Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med. 2006;10(1):45–55.
  • Cai W, Schaper W. Mechanisms of arteriogenesis. Acta Biochim Biophys Sin. 2008;40(8):681–692.
  • Helisch A, Schaper W. Arteriogenesis the development and growth of collateral arteries. Microcirculation. 2003;10(1):83–97.
  • Schierling W, Troidl K, Mueller C, et al. Increased intravascular flow rate triggers cerebral arteriogenesis. J Cereb Blood Flow Metab. 2009;29(4):726–737.
  • Branzan D, Etz CD, Moche M, et al. Ischaemic preconditioning of the spinal cord to prevent spinal cord ischaemia during endovascular repair of thoracoabdominal aortic aneurysm: first clinical experience. EuroIntervention. 2018;14(7):828–835.
  • Taira Y, Marsala M. Effect of proximal arterial perfusion pressure on function, spinal cord blood flow, and histopathologic changes after increasing intervals of aortic occlusion in the rat. Stroke. 1996;27(10):1850–1858.
  • Awad H, Tili E, Nuovo G, et al. Endovascular repair and open repair surgery of thoraco-abdominal aortic aneurysms cause drastically different types of spinal cord injury. Sci Rep. 2021;11(1):7834.
  • Petroff D, Czerny M, Kölbel T, et al. Paraplegia prevention in aortic aneurysm repair by thoracoabdominal staging with “minimally invasive staged segmental artery coil embolisation” (MISACE): trial protocol for a randomised controlled multicentre trial. BMJ Open. 2019;9(3):e025488.