101
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of switching features of a hydraulic seat valve with annular flow geometry

ORCID Icon, ORCID Icon, &
Pages 152-164 | Received 09 Feb 2018, Accepted 19 Jun 2018, Published online: 09 Jul 2018

References

  • Bardina, J.E., Huang, P.G., and Coakley, T.J., 1997. Turbulence Modeling Validation, Testing, and Development. Technical report, NASA Technical Memorandum, Ames.
  • Bender, N.C., et al., 2017b. Towards a modelling framework for designing active check valves a review of state-of-the-art. International Journal Fluid Power, 19 (01), 49–64. doi:10.1080/14399776.2017.1377027
  • Bender, N.C., Pedersen, H.C., and Nørgård, C., 2017a. Experimental Validation of Flow Force Models for Fast Switching Valves. Proceedings ASME Symposium Fluid Power Motion Control (Sarasota).
  • Brennen, C.E., 1982. A Review of Added Mass and Fluid Interial Forces. Technical Report January, Naval Civil Engineering Laboratory, California.
  • Ehsan, M., Rampen, W.H.S., and Salter, S.H., 2000. Modeling of digital-displacement pump-motors and their application as hydraulic drives for nonuniform loads. Journal Dynamics Systems Measurement Control, 122 (1), 210–215. doi:10.1115/1.482444
  • Funk, J.E., Wood, D.J., and Chao, S.P., 1972. The transient response of orifices and very short lines. Journal Basic Engineering, 94 (2), 483–489. doi:10.1115/1.3425456
  • Hansen, R.H., Kramer, M.M., and Vidal, E., 2013. Discrete displacement hydraulic power take-off system for the wavestar wave energy converter. Energies, 6 (8), 4001–4044. doi:10.3390/en6084001
  • Huova, M., Laamanen, A., and Linjama, M., 2010. Energy efficiency of three-chamber cylinder with digital valve system. International Journal Fluid Power, 11 (3), 15–22. doi:10.1080/14399776.2010.10781011
  • Knutson, A.L. and Van De Ven, J.D., 2016. Modelling and experimental validation of the displacement of a check valve in a hydraulic piston pump. International Journal Fluid Power, 17 (2), 114–124. doi:10.1080/14399776.2016.1160718
  • Kogler, H., et al., 2010. A Compact Hydraulic Switching Converter for Robotic Applications. In Proc. ASME Symp. Fluid Power Motion Control, 56–68, Bath.
  • Lai, R.Y.S., 1973. Translatory Accelerating Motion of a Circular Disk in a Viscous. Fluid Applications Sciences Researcher, 27 (1), 440–450. doi:10.1007/BF00382506
  • Lai, R.Y.S. and Mockros, L.F., 1972. The Stokes-flow drag on prolate and oblate spheroids during axial translator accelerations. Journal Fluid Mechanisms, 52 (1), 1–15. doi:10.1017/S0022112072002939
  • Landau, L.D. and Lifshitz, E.M., 1956. Fluid mechanics. Elsevier, second edition.
  • Lewis, R., 2007. A modelling technique for predicting compound impact wear. Wear, 262 (11–12), 1516–1521. doi:10.1016/j.wear.2007.01.032
  • Malalasekera, W. and Versteeg, H.K. 2006. An Introduction to Computational Fluid Dynamics - The Finite Volume Method. Vol. 44. US:Pearson Education.
  • Noergaard, C., et al., 2015. Experimental Validation of Modelled Fluid Forces in Fast Switching Hydraulic On/Off Valves. Int Conf Fluid Power Mechatronics. pages 68–73. China: IEEE.
  • Noergaard, C., et al., 2016. Optimization of Moving Coil Actuators for Digital Displacement Machines. In: Eight Work. Digit. Fluid Power. Tampere, Finland: Tampere University of Technology.
  • Noergaard, C., 2017. Design, Optimization and Testing of Valves for Digital Displacement Machines. Phd dissertation, Aalborg University.
  • Noergaard, C., et al., 2017. Test-rig for Valves of Digital Displacement Machines. In Ninth Work. Digit. Fluid Power. Aalborg: Aalborg University, 1–13.
  • Noergaard, C., et al., 2017a. Flow Characteristics and Sizing of Annular Seat Valves for Digital Displacement Machines. Modeling, Identification and Control, 31 (1), 1–13.
  • Roemer, D.B., et al., 2013. Method for Lumped Parameter Simulation of Digital Displacement Pumps/Motors Based on CFD. Applications Mechanisms Materials, 397–400, 615–620. doi:10.4028/www.scientific.net/AMM.397-400.615
  • Roemer, D.B., et al., 2014. Optimum design of seat region in valves suitable for digital displacement machines. International Journal Mechatronics Autom, 4 (2), 116–126. doi:10.1504/IJMA.2014.062339
  • Roemer, D.B., et al., 2015a. Optimum design of a moving coil actuator for fast switching valves in digital hydraulic pumps and motors. IEEE/ASME Trans. Mechatronics, 20 (6), 2761–2770. doi:10.1109/TMECH.2015.2410994
  • Roemer, D.B., Pedersen, H.C., and Andersen, T.O., 2015b. Modeling of Dynamic Fluid Forces in Fast Switching Valves. In Proc. ASME Symp. Fluid Power Motion Control, 1–10, Chicago.
  • Uusitalo, J.P., et al., 2010. Novel bistable hammer valve for digital hydraulics. International Journal Fluid Power, 11 (3), 35–44. doi:10.1080/14399776.2010.10781013
  • Wilfong, G., Bardorff, M., and Lumkes, J., 2011. Design and analysis of pilot operated high speed on/off valves for digital pump/motors. Proc. 52nd Natl. Conf. Fluid Power. National Fluid Power Association, pages 259–269.
  • Winkler, B., Plöckinger, A., and Scheidl, R., 2010. A novel piloted fast switching multi poppet valve. International Journal Fluid Power, 11 (3), 7–14. doi:10.1080/14399776.2010.10781010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.