171
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Urban growth modelling in Qazvin, Iran: an investigation into the performance of three ANFIS methods

& ORCID Icon

References

  • Aburas, M.M., et al., 2016. The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review. International Journal of Applied Earth Observation and Geoinformation, 52, 380–389. doi:10.1016/j.jag.2016.07.007
  • Adedeji, P.A., et al., 2020. Wind turbine power output very short-term forecast: a comparative study of data clustering techniques in a PSO-ANFIS model. Journal of Cleaner Production, 254, 120–135. 10.1016/j.jclepro.2020.120135
  • Adeleke, O., et al. 2020. Prediction of municipal solid waste generation: an investigation of the effect of clustering techniques and parameters on ANFIS model performance. Environmental Technology, 1–14. 10.1080/09593330.2020.1845819.
  • Ahmadlou, M., et al., 2019. Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto International, 34 (11), 1252–1272. 10.1080/10106049.2018.1474276.
  • Akkaya, E., 2016. ANFIS based prediction model for biomass heating value using proximate analysis components. Fuel, 180, 687–693. 10.1016/j.fuel.2016.04.112
  • Al-Ahmadi, K., et al., 2009. Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia. Ecological Complexity, 6 (2), 80–101. 10.1016/j.ecocom.2008.09.004.
  • Asubonteng, K., et al., 2018. Effects of tree-crop farming on land-cover transitions in a mosaic landscape in the eastern region of Ghana. Environmental Management, 62 (3), 529–547. 10.1007/s00267-018-1060-3.
  • Azari, M., et al., 2016. Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: application to Maragheh, Iran. GIScience & Remote Sensing, 53 (2), 183–205. 10.1080/15481603.2015.1137111.
  • Balzter, H., 2000. Markov chain models for vegetation dynamics. Ecological Modelling, 126 (2–3), 139–154. 10.1016/S0304-3800(00)00262-3.
  • Berberoğlu, S., Akın, A., and Clarke, K.C., 2016. Cellular automata modeling approaches to forecast urban growth for adana, Turkey: a comparative approach. Landscape and Urban Planning, 153, 11–27. 10.1016/j.landurbplan.2016.04.017
  • Bihamta, N., et al., 2015. Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran. Journal of the Indian Society of Remote Sensing, 43 (2), 407–414. 10.1007/s12524-014-0402-8.
  • Blecic, I., Cecchini, A., and Trunfio, G.A., 2015. How much past to see the future: a computational study in calibrating urban cellular automata. International Journal of Geographical Information Science, 29 (3), 349–374. 10.1080/13658816.2014.970190.
  • Broere, W., 2016. Urban underground space: solving the problems of today’s cities. Tunnelling and Underground Space Technology, 55, 245–248. 10.1016/j.tust.2015.11.012
  • Ewing, R.H., Pendall, R., and Chen, D.D., 2002. Measuring sprawl and its impact. Vol. 1, Washington, DC: Smart Growth America.
  • Ezeh, A., et al., 2017. The history, geography, and sociology of slums and the health problems of people who live in slums. The Lancet, 389 (10068), 547–558. 10.1016/S0140-6736(16)31650-6.
  • Fan, F., Wang, Y., and Wang, Z., 2008. Temporal and spatial change detecting (1998–2003) and predicting of land use and land cover in Core corridor of Pearl River Delta (China) by using TM and ETM+ images. Environmental Monitoring and Assessment, 137 (1), 127–147. 10.1007/s10661-007-9734-y.
  • Feng, Y., et al. 2021. Comparison of change and static state as the dependent variable for modeling urban growth. Geocarto International, 1–24. 10.1080/10106049.2021.1959657.
  • Hegazy, I., Seddik, W., and Ibrahim, H., 2017. Towards green cities in developing countries: Egyptian new cities as a case study. International Journal of Low-Carbon Technologies, 12 (4), 358–368. 10.1093/ijlct/ctx009.
  • Hosseini, S.H. and Hajilou, M., 2019. Drivers of urban sprawl in urban areas of Iran. Papers in Regional Science, 98 (2), 1137–1158. 10.1111/pirs.12381.
  • Jang, J.-S., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23 (3), 665–685. 10.1109/21.256541.
  • Jha, S.S., Manohar Kumar, C., and Nidamanuri, R.R., 2021. Flexible atmospheric compensation technique (FACT): a 6S based atmospheric correction scheme for remote sensing data. Geocarto International, 36 (1), 28–46. 10.1080/10106049.2019.1588391.
  • Kabisch, N. and Haase, D., 2011. Diversifying European agglomerations: evidence of urban population trends for the 21st century. Population, Space and Place, 17 (3), 236–253. 10.1002/psp.600.
  • Kamusoko, C. and Gamba, J., 2015. Simulating urban growth using a Random Forest-Cellular Automata (RF-CA) model. ISPRS International Journal of Geo-Information, 4 (2), 447–470. 10.3390/ijgi4020447.
  • Karaboga, D. and Kaya, E., 2019. Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artificial Intelligence Review, 52 (4), 2263–2293. 10.1007/s10462-017-9610-2.
  • Karimi, F., et al., 2019. An enhanced support vector machine model for urban expansion prediction. Computers, Environment and Urban Systems, 75, 61–75. 10.1016/j.compenvurbsys.2019.01.001
  • Khamis, K., Bradley, C., and Hannah, D., 2018. Understanding dissolved organic matter dynamics in urban catchments: insights from in situ fluorescence sensor technology. Wiley Interdisciplinary Reviews: Water, 5 (1), e1259. 10.1002/wat2.1259.
  • Li, M., Du, W., and Nian, F., 2014. An adaptive particle swarm optimization algorithm based on directed weighted complex network. Mathematical Problems in Engineering, 10.1155/2014/434972.
  • Li, X., et al., 2013. Early warning of illegal development for protected areas by integrating cellular automata with neural networks. Journal of Environmental Management, 130, 106–116. 10.1016/j.jenvman.2013.08.055
  • Li, X., et al., 2017. Experiences and issues of using cellular automata for assisting urban and regional planning in China. International Journal of Geographical Information Science, 31 (8), 1606–1629. 10.1080/13658816.2017.1301457.
  • Li, X. and Yeh, A.G.-O., 2001. Calibration of cellular automata by using neural networks for the simulation of complex urban systems. Environment and Planning A, 33 (8), 1445–1462. 10.1068/a33210
  • Li, X. and Yeh, A.G.-O., 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16 (4), 323–343. 10.1080/13658810210137004.
  • Liu, Y., et al., 2017. Analysis of the effectiveness of urban land-use-change models based on the measurement of spatio-temporal, dynamic urban growth: a cellular automata case study. Sustainability, 9 (5), 796. 10.3390/su9050796.
  • Masoumi, F., et al., 2017. A comparative study of landsat‐7 and landsat‐8 data using image processing methods for hydrothermal alteration mapping. Resource Geology, 67 (1), 72–88. 10.1111/rge.12117.
  • McDonnell, M.J. and Hahs, A.K., 2015. Adaptation and adaptedness of organisms to urban environments. Annual Review of Ecology, Evolution, and Systematics, 46 (1), 261–280. 10.1146/annurev-ecolsys-112414-054258.
  • Mohammady, S., 2016. Optimization of adaptive neuro fuzzy inference system based urban growth model. City, Territory and Architecture, 3 (1), 1–15. 10.1186/s40410-016-0039-8.
  • Mohammady, S. and Delavar, M.R., 2016. Urban sprawl assessment and modeling using landsat images and GIS. Modeling Earth Systems and Environment, 2 (3), 1–14. 10.1007/s40808-016-0209-4.
  • Mohammady, S., Delavar, M., and Pijanowski, B., 2013. Urban growth modeling using ANFIS algorithm: a case study for Sanandaj city, Iran. Int Arch Photogramm Remote Sens Spatial Inf Sci, 3, 493–498. 10.5194/isprsarchives-XL-1-W3-493-2013
  • Moradi, F., et al., 2019. Abutment scour depth modeling using neuro-fuzzy-embedded techniques. Marine Georesources & Geotechnology, 37 (2), 190–200. 10.1080/1064119X.2017.1420113.
  • Musa, S.I., Hashim, M., and Reba, M.N.M., 2017. A review of geospatial-based urban growth models and modelling initiatives. Geocarto International, 32 (8), 813–833. 10.1080/10106049.2016.1213891.
  • Mustafa, A., et al., 2017. Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM). Land Use Policy, 69, 529–540. 10.1016/j.landusepol.2017.10.009
  • Mustafa, A., et al., 2018. Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Computers, Environment and Urban Systems, 67, 147–156. 10.1016/j.compenvurbsys.2017.09.009
  • Nguyen, T.A., et al., 2019. Toward a sustainable city of tomorrow: a hybrid Markov–Cellular Automata modeling for urban landscape evolution in the Hanoi city (Vietnam) during 1990–2030. Environment, Development and Sustainability, 21 (1), 429–446. 10.1007/s10668-017-0046-2.
  • Nugroho, F. and Al-Sanjary, O.I., 2018. A review of simulation urban growth model. International Journal of Engineering & Technology, 7 (4.11), 17–23. 10.14419/ijet.v7i4.11.20681.
  • Parvinnezhad, D., et al. 2019. A modified spatial entropy for urban sprawl assessment. Geocarto International, 1–16. 10.1080/10106049.2019.1678676.
  • Pijanowski, B.C., et al., 2005. Calibrating a neural network‐based urban change model for two metropolitan areas of the Upper Midwest of the United States. International Journal of Geographical Information Science, 19 (2), 197–215. 10.1080/13658810410001713416.
  • Pijanowski, B.C., et al., 2014. A big data urban growth simulation at a national scale: configuring the GIS and neural network based land transformation model to run in a high performance computing (HPC) environment. Environmental Modelling & Software, 51, 250–268. 10.1016/j.envsoft.2013.09.015
  • Radwan, T.M., et al., 2019. Dramatic loss of agricultural land due to urban expansion threatens food security in the Nile Delta, Egypt. Remote Sensing, 11 (3), 332. 10.3390/rs11030332.
  • Rimal, B., et al., 2017. Monitoring and modeling of spatiotemporal urban expansion and land-use/land-cover change using integrated Markov chain cellular automata model. ISPRS International Journal of Geo-Information, 6 (9), 288. 10.3390/ijgi6090288.
  • Rimal, B., et al., 2018. Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and Markov chain. ISPRS International Journal of Geo-Information, 7 (4), 154. 10.3390/ijgi7040154.
  • Santé, I., et al., 2010. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landscape and Urban Planning, 96 (2), 108–122. 10.1016/j.landurbplan.2010.03.001.
  • Shafizadeh-Moghadam, H., et al., 2017a. Sensitivity analysis and accuracy assessment of the land transformation model using cellular automata. GIScience & Remote Sensing, 54 (5), 639–656. 10.1080/15481603.2017.1309125.
  • Shafizadeh-Moghadam, H., et al., 2017b. Coupling machine learning, tree-based and statistical models with cellular automata to simulate urban growth. Computers, Environment and Urban Systems, 64, 297–308. 10.1016/j.compenvurbsys.2017.04.002
  • Southon, G.E., et al., 2017. Biodiverse perennial meadows have aesthetic value and increase residents’ perceptions of site quality in urban green-space. Landscape and Urban Planning, 158, 105–118. 10.1016/j.landurbplan.2016.08.003
  • Statistical Center of Iran, 2019. Available from: https://www.amar.org.ir/Portals/1/yearbook/1397/03.pdf [Accessed 5 May 2020].
  • Taravat, A., Rajaei, M., and Emadodin, I., 2017. Urbanization dynamics of Tehran city (1975–2015) using artificial neural networks. Journal of Maps, 13 (1), 24–30. 10.1080/17445647.2017.1305300.
  • Triantakonstantis, D. and Mountrakis, G., 2012. Urban growth prediction: a review of computational models and human perceptions. 10.4236/jgis.2012.46060
  • Triantakonstantis, D., Prastacos, P., and Tsoukala, A., 2014. Analyzing urban sprawl in Rethymno, Greece. Journal of the Indian Society of Remote Sensing, 42 (3), 601–610. 10.1007/s12524-013-0350-8.
  • van Vliet, J., et al., 2016. A review of current calibration and validation practices in land-change modeling. Environmental Modelling & Software, 82, 174–182. 10.1016/j.envsoft.2016.04.017
  • Wang, R., et al., 2021. A comparison of proximity and accessibility drivers in simulating dynamic urban growth. Transactions in GIS, 25 (2), 923–947. 10.1111/tgis.12707.
  • Wang, R., Derdouri, A., and Murayama, Y., 2018. Spatiotemporal simulation of future land use/cover change scenarios in the Tokyo metropolitan area. Sustainability, 10 (6), 2056. 10.3390/su10062056.
  • Wang, S., et al., 2018. Detection of urban expansion and land surface temperature change using multi-temporal landsat images. Resources, Conservation and Recycling, 128, 526–534. 10.1016/j.resconrec.2016.05.011
  • Wang, S., et al., 2020. Integration of boosted regression trees and cellular automata—Markov model to predict the land use spatial pattern in Hotan Oasis. Sustainability, 12 (4), 1396. 10.3390/su12041396.
  • World Bank. 2018. Urban population (% of total population) - Iran, Islamic Rep. Available from: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?end=2018&locations=IR&start=1960&view=chart [Accessed 21 April 2021]
  • Wu, F., 2002. Calibration of stochastic cellular automata: the application to rural-urban land conversions. International Journal of Geographical Information Science, 16 (8), 795–818. 10.1080/13658810210157769.
  • Wu, F. and Webster, C.J., 1998. Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environment and Planning B: Planning and Design, 25 (1), 103–126. 10.1068/b250103.
  • Wu, H., et al., 2019. Examining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change. International Journal of Geographical Information Science, 33 (5), 1040–1061. 10.1080/13658816.2019.1568441.
  • Xu, T., Gao, J., and Coco, G., 2019. Simulation of urban expansion via integrating artificial neural network with Markov chain–cellular automata. International Journal of Geographical Information Science, 33 (10), 1960–1983. 10.1080/13658816.2019.1600701.
  • Yeom, C.-U. and Kwak, K.-C., 2018. Performance comparison of ANFIS models by input space partitioning methods. Symmetry, 10 (12), 700. 10.3390/sym10120700.
  • Zhou, Q., Herrera-Herbert, J., and Hidalgo, A., 2017. Predicting the risk of fault-induced water inrush using the adaptive neuro-fuzzy inference system. Minerals, 7 (4), 55. 10.3390/min7040055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.