159
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Downscaling land surface temperature with high-resolution image: a difference mean distribution (DMD) post-processing method

, , , , , & show all

References

  • Agam, N., et al., 2007. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sensing of Environment, 107, 545–558. doi:10.1016/j.rse.2006.10.006
  • Amazirh, A., Merlin, O., and Er-Raki, S., 2019. Including Sentinel-1 radar data to improve the disaggregation of MODIS land surface temperature data. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 11–26. doi:10.1016/j.isprsjprs.2019.02.004
  • Bala, R., Prasad, R., and Pratap Yadav, V., 2019. Disaggregation of modis land surface temperature in urban areas using improved thermal sharpening techniques. Advances in Space Research, 64, 591–602. doi:10.1016/j.asr.2019.05.004
  • Barsi, J.A., et al., 2005. Validation of a web-based atmospheric correction tool for single thermal band instruments. Proceedings of SPIE, Earth Observing Systems X, Bellingham, Washington, 58820E. doi:10.1117/12.619990.
  • Barsi, J.A., Barker, J.L., and Schott, J.R., 2003. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France. 5, 3014–3016. doi:10.1109/IGARSS.2003.1294665.
  • Carrão, H., Naumann, G., and Barbosa, P., 2016. Mapping global patterns of drought risk: an empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Global Environmental Change, 39, 108–124. doi:10.1016/j.gloenvcha.2016.04.012
  • Chandwadkar, R., et al., 2013. Comparison of edge detection techniques. 6th Annual Conference IRAJ, 133–136. doi:10.13140/RG.2.1.5036.7123
  • Chen, H., Wang, J., and Huang, J., 2014. Policy support, social capital, and farmers’ adaptation to drought in China. Global Environmental Change, 24, 193–202. doi:10.1016/j.gloenvcha.2013.11.010
  • Deng, C. and Wu, C., 2013. Examining the impacts of urban biophysical compositions on surface urban heat island: a spectral unmixing and thermal mixing approach. Remote Sensing of Environment, 131, 262–274. doi:10.1016/j.rse.2012.12.020
  • Duan, S.B., et al., 2019. Validation of collection 6 MODIS land surface temperature product using in situ measurements. Remote Sensing of Environment, 225, 16–29. doi:10.1016/j.rse.2019.02.020
  • Ebrahimy, H., et al., 2021. Downscaling modis land surface temperature product using an adaptive random forest regression method and google earth engine for a 19-years spatiotemporal trend analysis over Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2103–2112. doi:10.1109/JSTARS.2021.3051422
  • Essa, W., et al., 2012. Evaluation of the DisTrad thermal sharpening methodology for urban areas. International Journal of Applied Earth Observation and Geoinformation, 19, 163–172. doi:10.1016/j.jag.2012.05.010
  • Essa, W., et al., 2017. Improved DisTrad for downscaling thermal MODIS imagery over urban areas. Remote Sensing, 9, 1243. doi:10.3390/rs9121243
  • Eswar, R., Sekhar, M., and Bhattacharya, B.K., 2016. Disaggregation of LST over India: comparative analysis of different vegetation indices. International Journal of Remote Sensing, 37, 1035–1054. doi:10.1080/01431161.2016.1145363
  • Gilkey, P.B. and Steven, K., 1995. Invariance theory, the heat equation and the Atiyah-Singer index theorem. Transplantation Proceedings, 37, 1635–1636. doi:10.1016/j.transproceed.2004.09.023
  • Guillevic, P.C., et al., 2012. Land surface temperature product validation using NOAA’s surface climate observation networks-scaling methodology for the visible infrared imager radiometer suite (VIIRS). Remote Sensing of Environment, 124, 282–298. doi:10.1016/j.rse.2012.05.004
  • Hansen, J., et al., 2006. Global temperature change. Proceedings of the National Academy of Sciences, 103, 14288–14293. doi:10.1073/pnas.0606291103
  • Hansen, J., et al., 2010. Global surface temperature change. Reviews of Geophysics, 48. doi:10.1029/2010RG000345
  • Hu, D.Y., et al., 2015. Land surface temperature retrieval from Landsat 8 thermal infrared data using mono-window algorithm. Journal of Remote Sensing, 19 (6), 964–976. doi:10.11834/jrs.20155038
  • Ingels, J., et al., 2017. Short-term CO2 exposure and temperature rise effects on metazoan meiofauna and free-living nematodes in sandy and muddy sediments: results from a flume experiment. Journal of Experimental Marine Biology and Ecology, 502, 211–226. doi:10.1016/j.jembe.2017.07.012
  • Jw, A., et al., 2022. Downscaling land surface temperature: a framework based on geographically and temporally neural network weighted autoregressive model with spatio-temporal fused scaling factors. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 259–272. doi:10.1016/j.isprsjprs.2022.03.009
  • Konishi, S., et al., 2003. Statistical edge detection: learning and evaluating edge cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 57–74. doi:10.1109/TPAMI.2003.1159946
  • Kustas, W.P., et al., 2003. Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship. Remote Sensing of Environment, 85, 429–440. doi:10.1016/S0034-4257(03)00036-1
  • Li, Z.L., et al., 2013. Satellite-derived land surface temperature: current status and perspectives. Remote Sensing of Environment, 131, 14–37. doi:10.1016/j.rse.2012.12.008
  • Li, C., et al., 2017. Recent very hot summers in northern Hemispheric land areas measured by Wet Bulb Globe Temperature will be the norm within 20 years. Earth’s Future, 5, 1203–1216. doi:10.1002/2017EF000639
  • Li, Q., Chen, L., and Xu, Y., 2022. Drought risk and water resources assessment in the Beijing-Tianjin-Hebei region, China. Science of the Total Environment, 832, 154915. doi:10.1016/j.scitotenv.2022.154915
  • Liu, Y., Hiyama, T., and Yamaguchi, Y., 2006. Scaling of land surface temperature using satellite data: a case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sensing of Environment, 105, 115–128. doi:10.1016/j.rse.2006.06.012
  • Liu, K., Su, H., and Li, X., 2016. Estimating high-resolution urban surface temperature using a hyperspectral thermal mixing (HTM) approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 804–815. doi:10.1109/JSTARS.2015.2459375
  • Marques da Silva, J.R., et al., 2015. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature. International Journal of Applied Earth Observation and Geoinformation, 38, 40–50. doi:10.1016/j.jag.2014.12.016
  • Mei, A.X., et al., 2001. Introduction to remote sensing. Beijing: Higher Education Press.
  • Penteriani, V., et al., 2019. Responses of an endangered brown bear population to climate change based on predictable food resource and shelter alterations. Global Change Biology, 25, 1133–1151. doi:10.1111/gcb.14564
  • Piao, S., et al., 2009. Summer soil moisture regulated by precipitation frequency in China Environmental Research Letters. 4, 044012. doi:10.1088/1748-9326/4/4/044012
  • Qin, Z.H., et al., 2004. The estimation of land surface emissivity for Landsat TM6. Remote Sensing for Land and Resources, 2004 (3), 28–32. 36,41. doi:10.3969/j.1001-070X.2004.03.007
  • Qin, Z.H., Karnieli, A., and Berliner, P., 2001. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22 (18), 3719–3746. doi:10.1080/01431160010006971
  • Rankoana, S.A., 2018. Human perception of climate change. Weather, 73, 367–370. doi:10.1002/wea.3204
  • Roy, D.P., et al., 2014. Landsat-8: science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. doi:10.1016/j.rse.2014.02.001
  • Sobrino, J.A., Jiménez-Mu?Oz, J.C., and Paolini, L., 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90, 434–440. doi:10.1016/j.rse.2004.02.003
  • Sobrino, J.A., Raissouni, N., and Li, Z.L., 2001. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment, 75, 256–266. doi:10.1016/S0034-4257(00)00171-1
  • Wang, J., et al., 2020. Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 161, 76–89. doi:10.1016/j.isprsjprs.2020.01.014
  • Weng, Q. and Lu, D., 2008. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. International Journal of Applied Earth Observation and Geoinformation, 10, 83. doi:10.1016/j.jag.2007.05.002
  • Xu, C., et al., 2020. Surface soil temperature seasonal variation estimation in a forested area using combined satellite observations and in-situ measurements. International Journal of Applied Earth Observation and Geoinformation, 91, 102156. doi:10.1016/j.jag.2020.102156
  • Yang, Y., et al., 2017. Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression. Remote Sensing, 9, 789. doi:10.3390/rs9080789
  • Yin, J., et al., 2019. Impact of urban greenspace spatial pattern on land surface temperature: a geo-detector-based case study in Beijing metropolitan area, China. Landscape Ecology, 34, 2949–2961. doi:10.1007/s10980-019-00932-6
  • Zang, J.L., et al., 2020. Research on optimization of land surface temperature downscaling. Remote Sensing Information, 35 (4), 78–88. doi:10.3969/j.1000-3177.2020.04.012
  • Zhan, W., et al., 2013. Disaggregation of remotely sensed land surface temperature: literature survey, taxonomy, issues, and caveats. Remote Sensing of Environment, 131, 119–139. doi:10.1016/j.rse.2012.12.014
  • Zhang, Y., et al., 2015. Spatial patterns and temporal variability of drought in Beijing-Tianjin-Hebei metropolitan areas in China. Advances in Meteorology, 2015, 289471. doi:10.1155/2015/289471
  • Zhang, X., et al., 2020. Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 321–344. doi:10.1016/j.isprsjprs.2020.07.014
  • Zhang, Y., Wang, Y., and Niu, H., 2019. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. Science of the Total Environment, 656, 373–387. doi:10.1016/j.scitotenv.2018.11.362
  • Zullo, F., et al., 2019. Effects of urban growth spatial pattern (UGSP) on the land surface temperature (LST): a study in the Po Valley (Italy). Science of the Total Environment, 650, 1740–1751. doi:10.1016/j.scitotenv.2018.09.331

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.