1,845
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A GIS-based simulation and visualization tool for the assessment of gully erosion processes

ORCID Icon, , ORCID Icon, & ORCID Icon

References

  • Angileri, S.E., et al., 2016. Water erosion susceptibility mapping by applying stochastic gradient treeboost to the imera meridionale river basin (Sicily, Italy). Geomorphology, 262, 61–76. doi:10.1016/j.geomorph.2016.03.018
  • Archibold, O.W., et al., 2003. Gully retreat in a semi-urban catchment in Saskatoon, Saskatchewan. Applied Geography, 23 (4), 261–279. doi:10.1016/j.apgeog.2003.08.005
  • Azareh, A., et al., 2019. Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models. Science of the Total Environment, El Sievier, V (655), 684–696. A GIS-based simulation and visualisation tool for the assessment of Gully erosion processes https://doi.org/10.1016/j.scitotenv.2018.11.235
  • Baade, J. 1994 Gelände Experiment zur Verminderung des Schwebstoffes auf Kommen in landwirtschaftlichen Eizugsgebieten. Thesis (PhD), University of Heidelberg
  • Baumgartner, A. and Liebscher, H.J., 1990. Allgemeine Hydrologie, Quantitative Hydrologie, Gebr. Bornträger, Berlin, Stuttgart.
  • Bogomolov, A.I. and Mikhaylov, K.A., 1972. Hydravlica. Stroyizdat, Moskva in Russian.
  • Bosino, A., et al., 2021. Geomorphology of the upper Mkhomazi River basin, KwaZulu-Natal, South Africa, with emphasis on late Pleistocene colluvial deposits. Journal of Maps, 17 (3), 5–16. doi:10.1080/17445647.2020.1790435
  • Botha, G.A., Temme, A.J.A.M., and Singh, R.G., 2016. Colluvial deposits and slope instability. In: J. Knight and S.W. Grab, eds. Quaternary environmental change in Southern Africa: physical and human dimensions, (pp. 137–152). Cambridge: Cambridge University Press. doi:10.1017/CBO9781107295483.009
  • Bull, L.J. and Kirkby, M.J., 1997. Gully processes and modelling. Progress in Physical Geography, 21 (3), 354–374. doi:10.1177/030913339702100302
  • Cama, M., et al., 2020. A probabilistic assessment of soil erosion susceptibility in a head catchment of the Jemma basin, Ethiopian highlands. Geosciences, 10 (7), 248. doi:10.3390/geosciences10070248
  • Chaplot, V., et al., 2005. Dynamic modelling for linear erosion initiation and development under climate and land-use changes in northern Laos. Catena, 63 (2–3), 318–328. doi:10.1016/j.catena.2005.06.008
  • Conradie, D.C.U. 2012 South Africa’s climatic zones: today, tomorrow. International Green Building Conference and Exhibition, Sandton, South Africa.
  • Fluegel, W.A., et al., 2003. Integrating GIS, remote sensing, ground truthing and modelling approaches for regional erosion classification of semiarid catchments in South Africa and Swaziland. Hydrological Processes, 17, 917–928.
  • Flügel, W.A., et al., 2003. Integrating geographical information systems, remote sensing, ground truthing and modelling approaches for regional erosion classification of semi-arid catchments in South Africa. Hydrological Processes, 17 (5), 929–942. doi:10.1002/hyp.1171
  • Frankl, A., et al., 2012. Gully head retreat rates in the semi-arid highlands of Northern Ethiopia. Geomorphology, 173-174, 185–195. doi:10.1016/j.geomorph.2012.06.011
  • Garland, G., Hoffman, M.T., and Todd, S., 2000. Soil degradation. M.T. Hoffman, et al., eds. A national review of land degradation in South Africa. Pretoria, South Africa: South African National Biodiversity Institute, 69–107. http://www.nbi.ac.za/landdeg
  • Haan, C.T., Barfield, B.J., and Hayes, J.C., 1994. Design hydrology and sedimentology for small catchments. London: Academic Press.
  • Haregeweyn, N., et al., 2008a. Sediment yield variability Northern Ethiopia: a quantitative analysis of its controlling factors. Catena, 75 (1), 65–76. doi:10.1016/j.catena.2008.04.011
  • Hayas, A., et al., 2017. Reconstructing long-term gully dynamics in Mediterranean areas. Hydrology and Earth System Sciences, 21 (1), 235–249. doi:10.5194/hess-21-235-2017
  • Hoffman, M.T., et al., 1999. Land degradation in South Africa. department of environment. Affairs and Tourism: Pretoria. http://www.pcu.uct.ac.za/resources/landdeg/literature.htm
  • Ionita, I., 2006. Gully development in the Moldavian Plateau of Romania. Catena, 68 (2–3), 133–140. doi:10.1016/j.catena.2006.04.008
  • Kosov, B.F., I, N.I., and Zorina, Y.F., 1978. Eksperimental’nyye issledovaniya ovragoobrazovaniya. In: N.I. Makkaveev (Ed.), Eksperimental’naya Geomorfologiya, vol. 3. In Russian: Izd. Mosk. Univ., Moskva, pp. 113–140.
  • Kroon, F.J., et al., 2016. Towards protecting the great barrier reef from land-based pollution. Global Change Biology, 22 (6), 1985–2002. doi:10.1111/gcb.1326
  • Lei, X., et al., 2020. GIS-based machine learning algorithms for gully erosion susceptibility mapping in a Semi-Arid region of Iran. Remote Sensing, 12 (15), 2478. doi:10.3390/rs12152478
  • Le Roux, J.J., et al., 2008. Water erosion prediction at a national scale for South Africa. Water SA, 34 (3), 305–314. doi:10.4314/wsa.v34i3
  • Li, Z., et al., 2015. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology, 228, 462–469. doi:10.1016/j.geomorph.2014.10.005
  • Maerker, M., 2001. Regionale Erosionsmodellierung unter Verwendung des Konzepts der Erosion Response Units (ERU) am Beispiel zweier Flusseinzugsgebiete im südlichen Afrika. Dr. rer. nat. Jena: Friedrich-Schiller-Universität Jena.
  • Maerker, M., et al., 2003. Preliminary assessment of IPCC-SRES scenarios on future water resources using the WaterGAP 2 model. In: MODSIM 2003: international congress on modelling and simulation, (pp. 440–445). University of Kassel: Center of Environmental Systems Research. http://www.mssanz.org.au/MODSIM03/Volume01/A07/03Maerker.pdf
  • Maerker, M., et al., 2020. Assessment of calanchi and rill-interrill erosion susceptibility in northern Liguria, Italy: a case study using a probabilistic modelling framework. Geoderma, 371, 114367. doi:10.1016/j.geoderma.2020.114367
  • Maerker, M., Pelacani, S., and Schröder, B., 2011. A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy. Geomorphology, 125 (4), 530–540. doi:10.1016/j.geomorph.2010.10.022
  • Marzolff, I., Ries, J., and Poesen, J., 2011. Short-term versus medium-term monitor-ing for detecting gully-erosion variability in a Mediterranean environment. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.2172
  • Meliho, M., Khattabi, A., and Mhammdi, N., 2018. A GIS-based approach for gully erosion susceptibility modelling using bivariate statistics methods in the Ourika watershed, Morocco. Environ Earth Sci, 77, 655. https://doi.org/10.1007/s12665-018-7844-1
  • Mirtskhulava, T.Y., 1988. Osnovy Fiziki i Mekhaniki Erozii Rusel (Principles of physics and mechanics of channel erosion) (in Russian). Gidrometeoizdat, Leningrad 303 pp .
  • Mitasova, H., et al., 2013. GIS-based soil erosion modeling. In:J. Shroder and M.P. Bishop. Treatise on Geomorphology. eds., Remote sensing and GIScience in geomorphology. San Diego, CA: Academic Press, Vol. 3 228–258. doi:10.1016/B978-0-12-374739-6.00052-X
  • Msadala, V.P., et al., 2012 Sediment yield prediction for South Africa, 2010 edition. WRC Report No. K5/1765. Pretoria: Water Research Commission.
  • Nel, W., 2009. Rainfall trends in the KwaZulu-Natal Drakensberg region of South Africa during the twentieth century. International Journal of Climatology, 29 (11), 1634–1641. doi:10.1002/joc.1814
  • Nhu, V.-H., et al., 2020. GIS-based gully erosion susceptibility mapping: a comparison of computational ensemble data mining models. Applied Sciences, 10 (6), 2039. doi:10.3390/app10062039
  • Omran, A., et al., 2016. New ArcGIS tools developed for stream network extraction and basin delineations using Python and java script. Computers & Geosciences, 94, 140–149. doi:10.1016/j.cageo.2016.06.012
  • Park, Y., et al., 2009 Development of web-based SWAT system. Proceedings of ASABE, Reno, Nevada.
  • Partridge, T.C., et al., 2010. The geomorphic provinces of South Africa, Lesotho and Swaziland: a physiographic subdivision for earth and environmental scientists. Transactions of the Royal Society of South Africa, 65 (1), 1–47. doi:10.1080/00359191003652033
  • Poesen, J. and Govers, G., 1990. Gully erosion in the loam belt of Belgium: typology and control measures. In: J. Boardmann, I.D.L. Foster, and J.A. Dearing, eds. Soil erosion on agriculture land. Wiely, Chichster, UK: John wiley & Sons Ltd., 513–530.
  • Poesen, J.W.A., Torri, D.B., and Van Walleghem, T., 2011. Gully erosion: procedures to adopt when modelling soil erosion in landscapes affected by gullying. In: R.P.C. Morgan and M.A. Nearing, eds. Handbook of erosion modelling. Blackwell: Oxford, 360–386.
  • Poesen, J., Vandaele, K., and Van Wesemael, B. 1998. Gully erosion: importance and model implications. In: J. Boardman and D.T. Favis-Mortlock, eds. Modelling soil erosion by water. Berlin Heidelberg, NATO-ASI Series: Springer-Verlag, Vol. I-55, 285–311.
  • Poeter, E., et al. 2005 UCODE 2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation, technical report, USGS.
  • Renard, K.G., et al., 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Washington, DC (USA): USDA-ARS. Agriculture Handbook No. 703.
  • Rooseboom, A., et al. 1992 The development of the new sediment yield map of South Africa. WRC Report No. 297/2/92. Water Research Commission, Pretoria, South Africa.
  • Schaller, J., Gehrke, T., and Strout, N., 2009. ArcGIS processing models for regional environmental planning in Bavaria. In: S. Geertman and J. Stillwell, eds. Planning support systems best practice and new methods. The geojournal library. Vol. 95. 243–264. Dordrecht: Springer . doi:10.1007/978-1-4020-8952-7_13
  • Schröder, D. and Omran, A., 2013. Terrain analysis for flash flood risk mapping. In: A. Vyas, F.-J. Behr, and D. Schröder, eds. Proceeding of Applied Geoinformatics for Society and Environment (AGSE). Germany: AGSE Publishing-HFT-Stuttgart, 1–8.
  • Sidorchuk, A., 1996. Gully erosion and thermo-erosion on the Yamal Peninsula. G. Hazards and O. Slaymaker, 153–168. New York: John Wiley.
  • Sidorchuk, A., 1999. Dynamic and static models of gully erosion. Catena, 37 (3–4), 401–414. doi:10.1016/S0341-8162(99)00029-6
  • Sidorchuk, A., et al., 2001. Soil erosion modelling in the mbuluzi river catchment (Swaziland, South Africa). part i: modelling the dynamic evolution of gullies. Geografia Fisica e Dinamicca Quaternaria, 24 (2), 177–187.
  • Sidorchuk, A., et al., 2003. Gully erosion modelling and landscape response in the Mbuluzi River catchment of Swaziland. Catena, 50 (2–4), 507–525. doi:10.1016/S0341-8162(02)00123-6
  • Sidorchuk, A., 2015. Gully erosion in the cold environment: risks and hazards. Adv. Environ. Res, 44, 139–192.
  • Sidorchuk, A., 2021. Models of Gully erosion by Water. Water, 13 (22), 3293. doi:10.3390/w13223293
  • Sidorchuk, A. and Sidorchuk, A., 1998. Model for estimating gully morphology. Vol. 249. Wallingford: IAHS Publ, 333–343.
  • Torri, D., et al., 2018. Gully head modelling: a Mediterranean badland case study. Earth Surface Processes and Landforms, Wiley 43 (12), 2547–2561. doi:10.1002/esp.4414
  • Trofimov, A. and Moskovikin, V.M. 1983 Metamaticheskoye Modelirovaniye v Geomorfologii sklonov (mathematical modelling in geomorphology of slopes). IZd. Kazan Univ., Kazan.
  • US Soil Conservation Service 1966 Procedures for determining rates of land damage, land depreciation and volume of sediment produced by Gully erosion. Tech. Release no. 32. Washington: US Dept Agric.
  • Vandekerckhove, L., et al., 2001. A method for dendrochronological assessment of medium-term gully erosion rates. Catena, 45 (2), 123–161. doi:10.1016/S0341-8162(01)00142-4
  • Vanmaercke, M., et al., 2021. Measuring, modelling and managing gully erosion at large scales: a state of the art. Earth-Science Reviews. doi:10.1016/j.earscirev.2021.103637
  • Vanmaercke, M., et al., 7752012. A comparison of measured catchment sediment yields with measured and predicted hillslope 776 erosion rates in Europe. Journal of Soils and Sediments, 12, 586–602. doi:10.1007/s11368-012-0479-z
  • Wesseling, C.G., et al., 1996. Integrating dynamic environmental models in GIS: the development of a dynamic modelling language. Transactions in GIS, 1 (1), 40–48. doi:10.1111/j.1467-9671.1996.tb00032.x
  • Zabihi, M., et al., 2018. Spatial modelling of gully erosion in Mazandaran Province, northern Iran. Catena, 161, 1–13. doi:10.1016/j.catena.2017.10.010
  • Zorina, F., 1979. Raschetnyye method opredeleniya potentsiala ovrazhnoy erozii (Methods of calculating gully erosion potential) . In: Eroziya pochv I Ruslovyye Protsessy (Soil erosion and channel process) (in Russian) edited by R. S. Chalov. Vol. 7, Moscow Univ. Press, 81–90.