Publication Cover
Human Fertility
an international, multidisciplinary journal dedicated to furthering research and promoting good practice
Volume 26, 2023 - Issue 6
478
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The Effect of CoQ10 supplementation on ART treatment and oocyte quality in older women

&
Pages 1544-1552 | Received 08 Apr 2022, Accepted 17 Feb 2023, Published online: 27 Apr 2023

References

  • Akarsu, S., Gode, F., Isik, A. Z., Dikmen, Z. G., & Tekindal, M. A. (2017). The association between coenzyme Q10 concentrations in follicular fluid with embryo morphokinetics and pregnancy rate in assisted reproductive techniques. Journal of Assisted Reproduction and Genetics, 34(5), 599–605. https://doi.org/10.1007/s10815-017-0882-x
  • Al-Zubaidi, U., Adhikari, D., Cinar, O., Zhang, Q. H., Yuen, W. S., Murphy, M. P., Rombauts, L., Robker, R. L., & Carroll, J. (2021). Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes. Human Reproduction, 36(3), 771–784. https://doi.org/10.1093/humrep/deaa300
  • Baertling, F., Sánchez-Caballero, L., Timal, S., van den Brand, M. A., Ngu, L. H., Distelmaier, F., Rodenburg, R. J., & Nijtmans, L. G. (2017). Mutations in mitochondrial complex I assembly factor NDUFAF3 cause Leigh syndrome. Molecular Genetics and Metabolism, 120(3), 243–246. https://doi.org/10.1016/j.ymgme.2016.12.005
  • Ben-Meir, A., Burstein, E., Borrego-Alvarez, A., Chong, J., Wong, E., Yavorska, T., Naranian, T., Chi, M., Wang, Y., Bentov, Y., Alexis, J., Meriano, J., Sung, H. K., Gasser, D. L., Moley, K. H., Hekimi, S., Casper, R. F., & Jurisicova, A. (2015). Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell, 14(5), 887–895. https://doi.org/10.1111/acel.12368
  • Bentov, Y., Hannam, T., Jurisicova, A., Esfandiari, N., & Casper, R. F. (2014). Coenzyme Q10 supplementation and oocyte Aneuploidy in women undergoing IVF-ICSI Treatment. Clinical Medicine Insights. Reproductive Health, 8, 31–36. https://doi.org/10.4137/CMRH.S14681
  • Cimadomo, D., Fabozzi, G., Vaiarelli, A., Ubaldi, N., Ubaldi, F. M., & Rienzi, L. (2018). Impact of maternal age on oocyte and embryo competence. Frontiers in Endocrinology, 9, 327. https://doi.org/10.3389/fendo.2018.00327
  • Dalton, C. M., Szabadkai, G., & Carroll, J. (2014). Measurement of ATP in single oocytes: Impact of maturation and cumulus cells on levels and consumption. Journal of Cellular Physiology, 229(3), 353–361. https://doi.org/10.1002/jcp.24457
  • Garrido-Maraver, J., Cordero, M. D., Oropesa-Ávila, M., Fernández Vega, A., de la Mata, M., Delgado Pavón, A., de Miguel, M., Pérez Calero, C., Villanueva Paz, M., Cotán, D., & Sánchez-Alcázar, J. A. (2014). Coenzyme q10 therapy. Molecular Syndromology, 5(3-4), 187–197. https://doi.org/10.1159/000360101
  • Giannubilo, S. R., Orlando, P., Silvestri, S., Cirilli, I., Marcheggiani, F., Ciavattini, A., & Tiano, L. (2018). CoQ10 supplementation in patients undergoing IVF-ET: The relationship with follicular fluid content and oocyte maturity. Antioxidants, 7(10), 141. https://doi.org/10.3390/antiox7100141
  • Gill, A. J. (2012). Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia. Pathology, 44(4), 285–292. https://doi.org/10.1097/PAT.0b013e3283539932
  • Handyside, A. H., Montag, M., Magli, M. C., Repping, S., Harper, J., Schmutzler, A., Vesela, K., Gianaroli, L., & Geraedts, J. (2012). Multiple meiotic errors caused by predivision of chromatids in women of advanced maternal age undergoing in vitro fertilisation. European Journal of Human Genetics, 20(7), 742–747. https://doi.org/10.1038/ejhg.2011.272
  • Hoshino, Y. (2018). Updating the markers for oocyte quality evaluation: Intracellular temperature as a new index. Reproductive Medicine and Biology, 17(4), 434–441. https://doi.org/10.1002/rmb2.12245
  • Levin, I., Almog, B., Shwartz, T., Gold, V., Ben-Yosef, D., Shaubi, M., Amit, A., & Malcov, M. (2012). Effects of laser polar-body biopsy on embryo quality. Fertility and Sterility, 97(5), 1085–1088. https://doi.org/10.1016/j.fertnstert.2012.02.008
  • Ma, L., Cai, L., Hu, M., Wang, J., Xie, J., Xing, Y., Shen, J., Cui, Y., Liu, X. J., & Liu, J. (2020). Coenzyme Q10 supplementation of human oocyte in vitro maturation reduces postmeiotic aneuploidies. Fertility and Sterility, 114(2), 331–337. https://doi.org/10.1016/j.fertnstert.2020.04.002
  • Mah, L. J., El-Osta, A., & Karagiannis, T. C. (2010). GammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia, 24(4), 679–686. https://doi.org/10.1038/leu.2010.6
  • Mailloux, R. J., McBride, S. L., & Harper, M. E. (2013). Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends in Biochemical Sciences, 38(12), 592–602. https://doi.org/10.1016/j.tibs.2013.09.001
  • Marei, W. F. A., Van den Bosch, L., Pintelon, I., Mohey-Elsaeed, O., Bols, P. E. J., & Leroy, J. L. M. R. (2019). Mitochondria-targeted therapy rescues development and quality of embryos derived from oocytes matured under oxidative stress conditions: A bovine in vitro model. Human Reproduction, 34(10), 1984–1998. https://doi.org/10.1093/humrep/dez161
  • Marei, W. F. A., & Leroy, J. L. M. R. (2022). Cellular stress responses in oocytes: Molecular changes and clinical implications. Advances in Experimental Medicine and Biology, 1387, 171–189. https://doi.org/10.1007/5584_2021_690
  • Maside, C., Martinez, C. A., Cambra, J. M., Lucas, X., Martinez, E. A., Gil, M. A., Rodriguez-Martinez, H., Parrilla, I., & Cuello, C. (2019). Supplementation with exogenous coenzyme Q10 to media for in vitro maturation and embryo culture fails to promote the developmental competence of porcine embryos. Reproduction in Domestic Animals = Zuchthygiene, 54(Suppl 4), 72–77. https://doi.org/10.1111/rda.13486
  • Ménézo, Y. J., & Hérubel, F. (2002). Mouse and bovine models for human IVF. Reproductive Biomedicine Online, 4(2), 170–175. https://doi.org/10.1016/s1472-6483(10)61936-0
  • Miao, Y. L., Kikuchi, K., Sun, Q. Y., & Schatten, H. (2009). Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Human Reproduction Update, 15(5), 573–585. https://doi.org/10.1093/humupd/dmp014
  • Mockett, R. J., Sohal, B. H., & Sohal, R. S. (2010). Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster. Free Radical Biology & Medicine, 49(12), 2028–2031. https://doi.org/10.1016/j.freeradbiomed.2010.09.029
  • Neuber, E., & Powers, R. D. (2000). Is the mouse a clinically relevant model for human fertilization failures? Human Reproduction, 15(1), 171–174. https://doi.org/10.1093/humrep/15.1.171
  • Niu, Y. J., Zhou, W., Nie, Z. W., Zhou, D., Xu, Y. N., Ock, S. A., Yan, C. G., & Cui, X. S. (2020). Ubiquinol-10 delays postovulatory oocyte aging by improving mitochondrial renewal in pigs. Aging, 12(2), 1256–1271. https://doi.org/10.18632/aging.102681
  • Perlman, R. L. (2016). Mouse models of human disease: An evolutionary perspective. Evolution, Medicine, and Public Health, 2016(1), 170–176. https://doi.org/10.1093/emph/eow014
  • Pokrzywinski, K. L., Biel, T. G., Kryndushkin, D., & Rao, V. A. (2016). Therapeutic targeting of the mitochondria initiates excessive superoxide production and mitochondrial depolarization causing decreased mtDNA integrity. PLOS One. 11(12), e0168283. https://doi.org/10.1371/journal.pone.0168283
  • Rose, B. I., & Laky, D. (2013). Polar body fragmentation in IVM oocytes is associated with impaired fertilization and embryo development. Journal of Assisted Reproduction and Genetics, 30(5), 679–682. https://doi.org/10.1007/s10815-013-9982-4
  • Santos, R. R., Schoevers, E. J., & Roelen, B. A. (2014). Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology. Reproductive Biology and Endocrinology: RB&E, 12, 117. https://doi.org/10.1186/1477-7827-12-117
  • Sun, C., Liu, X., Di, C., Wang, Z., Mi, X., Liu, Y., Zhao, Q., Mao, A., Chen, W., Gan, L., & Zhang, H. (2017). MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential. Autophagy, 13(4), 730–738. https://doi.org/10.1080/15548627.2017.1280219
  • Synowiec, P. (2020). Live births by age of mother and age-specific fertility rates, 1938 to 2020 Office of National Statistics. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/datasets/birthsummarytables
  • Tan, B. K., Vandekerckhove, P., Kennedy, R., & Keay, S. D. (2005). Investigation and current management of recurrent IVF treatment failure in the UK. BJOG: An International Journal of Obstetrics and Gynaecology, 112(6), 773–780. https://doi.org/10.1111/j.1471-0528.2005.00523.x
  • Tan, T. Y., Lau, S. K., Loh, S. F., & Tan, H. H. (2014). Female ageing and reproductive outcome in assisted reproduction cycles. Singapore Medical Journal, 55(6), 305–309. https://doi.org/10.11622/smedj.2014081
  • Telessy, I. G. (2018). Chapter 24 Nutraceuticals. In R. R. Watson, R. Singh, & T. Takahashi (Eds), The Role of Functional Food Security in Global Health. (pp 409–421) Elsevier Science & Technology.
  • Ubaldi, F. M., Cimadomo, D., Vaiarelli, A., Fabozzi, G., Venturella, R., Maggiulli, R., Mazzilli, R., Ferrero, S., Palagiano, A., & Rienzi, L. (2019). Advanced Maternal Age in IVF: Still a challenge? The present and the future of its treatment. Frontiers in Endocrinology, 10, 94. https://doi.org/10.3389/fendo.2019.00094
  • Van Raamsdonk, J. M., & Hekimi, S. (2009). Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLOS Genetics, 5(2), e1000361. https://doi.org/10.1371/journal.pgen.1000361
  • Xu, Y., Nisenblat, V., Lu, C., Li, R., Qiao, J., Zhen, X., & Wang, S. (2018). Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reproductive Biology and Endocrinology, 16(1), 29. https://doi.org/10.1186/s12958-018-0343-0
  • Zhang, M., ShiYang, X., Zhang, Y., Miao, Y., Chen, Y., Cui, Z., & Xiong, B. (2019). Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radical Biology & Medicine, 143, 84–94. https://doi.org/10.1016/j.freeradbiomed.2019.08.002
  • Zhang, Y., Liu, J., Chen, X. Q., & Chen, C. Y. (2018). Ubiquinol is superior to ubiquinone to enhance Coenzyme Q10 status in older men. Food & Function, 9(11), 5653–5659. https://doi.org/10.1039/c8fo00971f
  • Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S., Babenko, V. A., Zorov, S. D., Balakireva, A. V., Juhaszova, M., Sollott, S. J., & Zorov, D. B. (2018). Mitochondrial membrane potential. Analytical Biochemistry, 552, 50–59. https://doi.org/10.1016/j.ab.2017.07.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.