Publication Cover
Human Fertility
an international, multidisciplinary journal dedicated to furthering research and promoting good practice
Volume 26, 2023 - Issue 6
169
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Tissue engineering studies in male infertility disorder

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 1617-1635 | Received 11 Jun 2022, Accepted 06 Jul 2023, Published online: 04 Oct 2023

References

  • Abu Elhija, M., Lunenfeld, E., Schlatt, S., & Huleihel, M. (2012). Differentiation of murine male germ cells to spermatozoa in a soft agar culture system. Asian Journal of Andrology, 14(2), 285–293. https://doi.org/10.1038/aja.2011.112
  • Adamczewska, D., Słowikowska-Hilczer, J., & Walczak-Jędrzejowska, R. (2022). The association between vitamin d and the components of male fertility: A systematic review. Biomedicines, 11(1), 90. https://doi.org/10.3390/biomedicines11010090
  • Alrahel, A., Movahedin, M., Mazaheri, Z., & Amidi, F. (2018). Study of Tnp1, Tekt1, and Plzf genes expression during an in vitro three-dimensional neonatal male mice testis culture. Iranian Biomedical Journal, 22(4), 258–263. https://doi.org/10.22034/ibj.22.4.258
  • Alves-Lopes, J. P., Söder, O., & Stukenborg, J.-B. (2017). Testicular organoid generation by a novel in vitro three-layer gradient system. Biomaterials, 130, 76–89. https://doi.org/10.1016/j.biomaterials.2017.03.025
  • Amado, S., Rodrigues, J. M., Luís, A. L., Armada-da-Silva, P. A., Vieira, M., Gartner, A., Simões, M. J., Veloso, A. P., Fornaro, M., Raimondo, S., Varejão, A. S., Geuna, S., & Maurício, A. C. (2010). Effects of collagen membranes enriched with in vitro-differentiated N1E-115 cells on rat sciatic nerve regeneration after end-to-end repair. Journal of NeuroEngineering and Rehabilitation, 7(1), 7. https://doi.org/10.1186/1743-0003-7-7
  • Ávila, C., Vinay, J. I., Arese, M., Saso, L., & Rodrigo, R. (2022). Antioxidant intervention against male infertility: Time to design novel strategies. Biomedicines, 10(12), 3058. https://doi.org/10.3390/biomedicines10123058
  • Badylak, S. F., Freytes, D. O., & Gilbert, T. W. (2009). Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia, 5(1), 1–13. https://doi.org/10.1016/j.actbio.2008.09.013
  • Baert, Y., Dvorakova-Hortova, K., Margaryan, H., & Goossens, E. (2019). Mouse in vitro spermatogenesis on alginate-based 3D bioprinted scaffolds. Biofabrication, 11(3), 035011. https://doi.org/10.1088/1758-5090/ab1452
  • Baert, Y., Stukenborg, J.-B., Landreh, M., De Kock, J., Jörnvall, H., Söder, O., & Goossens, E. (2015). Derivation and characterization of a cytocompatible scaffold from human testis. Human Reproduction, 30(2), 256–267. https://doi.org/10.1093/humrep/deu330
  • Bashiri, Z., Amiri, I., Gholipourmalekabadi, M., Falak, R., Asgari, H., Maki, C. B., Moghaddaszadeh, A., & Koruji, M. (2021). Artificial testis: A testicular tissue extracellular matrix as a potential bio-ink for 3D printing. Biomaterials Science, 9(9), 3465–3484. https://doi.org/10.1039/d0bm02209h
  • Bhang, D. H., Kim, B. J., Kim, B. G., Schadler, K., Baek, K. H., Kim, Y. H., Hsiao, W., Ding, B. S., Rafii, S., Weiss, M. J., Chou, S. T., Kolon, T. F., Ginsberg, J. P., Ryu, B. Y., & Ryeom, S. (2018). Testicular endothelial cells are a critical population in the germline stem cell niche. Nature Communications, 9(1), 4379. https://doi.org/10.1038/s41467-018-06881-z
  • Bhaskar, R., & Gupta, M. K. (2020). Testicular tissue engineering: An emerging solution for in vitro spermatogenesis. In K. Pal, I. Banerjee, P. Sarkar, D. Kim, W-P. Deng, N. K. Dubey, & K. Majumder (Eds.), Biopolymer-based formulations: Biomedical and food (pp. 835–858). Elsevier.
  • Blume-Jensen, P., Janknecht, R., & Hunter, T. (1998). The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Current Biology, 8(13), 779–782. https://doi.org/10.1016/s0960-9822(98)70302-1
  • Boulicault, M., Perret, M., Galka, J., Borsa, A., Gompers, A., Reiches, M., & Richardson, S. (2022). The future of sperm: A biovariability framework for understanding global sperm count trends. Human Fertility, 25(5), 888–902. https://doi.org/10.1080/14647273.2021.1917778
  • Brinster, R. L., & Zimmermann, J. W. (1994). Spermatogenesis following male germ-cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 11298–11302. https://doi.org/10.1073/pnas.91.24.11298
  • Buaas, F. W., Kirsh, A. L., Sharma, M., McLean, D. J., Morris, J. L., Griswold, M. D., de Rooij, D. G., & Braun, R. E. (2004). Plzf is required in adult male germ cells for stem cell self-renewal. Nature Genetics, 36(6), 647–652. https://doi.org/10.1038/ng1366
  • Carruthers, C. A., Dearth, C. L., Reing, J. E., Kramer, C. R., Gagne, D. H., Crapo, P. M., Garcia, O., Jr, Badhwar, A., Scott, J. R., & Badylak, S. F. (2015). Histologic characterization of acellular dermal matrices in a porcine model of tissue expander breast reconstruction. Tissue Engineering. Part A, 21(1–2), 35–44. https://doi.org/10.1089/ten.TEA.2014.0095
  • Chan, A. L., La, H. M., Legrand, J. M. D., Mäkelä, J. A., Eichenlaub, M., De Seram, M., Ramialison, M., & Hobbs, R. M. (2017). Germline stem cell activity is sustained by SALL4-dependent silencing of distinct tumor suppressor genes. Stem Cell Reports, 9(3), 956–971. https://doi.org/10.1016/j.stemcr.2017.08.001
  • Cheng, C. Y., Wong, E. W., Yan, H. H., & Mruk, D. D. (2010). Regulation of spermatogenesis in the microenvironment of the seminiferous epithelium: New insights and advances. Molecular and Cellular Endocrinology, 315(1–2), 49–56. https://doi.org/10.1016/j.mce.2009.08.004
  • Chimisso, V., Aleman Garcia, M. A., Yorulmaz Avsar, S. Y., Dinu, I. A., & Palivan, C. G. (2020). Design of bio-conjugated hydrogels for regenerative medicine applications: From polymer scaffold to biomolecule choice. Molecules, 25(18), 4090. https://doi.org/10.3390/molecules25184090
  • Chu, C., Schmidt, J. J., Carnes, K., Zhang, Z., Kong, H. J., & Hofmann, M. C. (2009). Three-dimensional synthetic niche components to control germ cell proliferation. Tissue Engineering. Part A, 15(2), 255–262. https://doi.org/10.1089/ten.tea.2008.0100
  • Cui, H., Nowicki, M., Fisher, J. P., & Zhang, L. G. (2017). 3D bioprinting for organ regeneration. Advanced Healthcare Materials, 6(1), 1601118. https://doi.org/10.1002/adhm.201601118
  • Davidoff, M., Middendorff, R., Koeva, Y., Pusch, W., Jezek, D., & Müller, D. (2001). Glial cell line-derived neurotrophic factor (GDNF) and its receptors GFRalpha-1 and GFRalpha-2 in the human testis. Italian Journal of Anatomy and Embryology = Archivio Italiano di Anatomia ed Embriologia, 106(2 Suppl 2), 173–180.
  • De Rooij, D. G. (2009). The spermatogonial stem cell niche. Microscopy Research and Technique, 72(8), 580–585. https://doi.org/10.1002/jemt.20699
  • DeFalco, T., Potter, S. J., Williams, A. V., Waller, B., Kan, M. J., & Capel, B. (2015). Macrophages contribute to the spermatogonial niche in the adult testis. Cell Reports, 12(7), 1107–1119. https://doi.org/10.1016/j.celrep.2015.07.015
  • Dubois, W., & Callard, G. V. (1993). Culture of intact Sertoli/germ cell units and isolated Sertoli cells from Squalus testis. II. Stimulatory effects of insulin and IGF‐I on DNA synthesis in premeiotic stages. The Journal of Experimental Zoology, 267(2), 233–244. https://doi.org/10.1002/jez.1402670217
  • Dziki, J., Badylak, S., Yabroudi, M., Sicari, B., Ambrosio, F., Stearns, K., Turner, N., Wyse, A., Boninger, M. L., Brown, E. H. P., & Rubin, J. P. (2016). An acellular biologic scaffold treatment for volumetric muscle loss: Results of a 13-patient cohort study. NPJ Regenerative Medicine, 1(1), 16008. https://doi.org/10.1038/npjregenmed.2016.8
  • Edmondson, R., Broglie, J. J., Adcock, A. F., & Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and Drug Development Technologies, 12(4), 207–218. https://doi.org/10.1089/adt.2014.573
  • Endo, T., Romer, K. A., Anderson, E. L., Baltus, A. E., de Rooij, D. G., & Page, D. C. (2015). Periodic retinoic acid–STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 112(18), E2347–E2356. https://doi.org/10.1073/pnas.1505683112
  • Eshghi, S., & Schaffer, D. V. (2008). Engineering microenvironments to control stem cell fate and function. In StemBook. Harvard Stem Cell Institute. https://doi.org/10.3824/stembook.1.5.1
  • Eslahi, N., Hadjighassem, M. R., Joghataei, M. T., Mirzapour, T., Bakhtiyari, M., Shakeri, M., Pirhajati, V., Shirinbayan, P., & Koruji, M. (2013). The effects of poly L-lactic acid nanofiber scaffold on mouse spermatogonial stem cell culture. International Journal of Nanomedicine, 8, 4563–4576. https://doi.org/10.2147/IJN.S45535
  • Falender, A. E., Freiman, R. N., Geles, K. G., Lo, K. C., Hwang, K., Lamb, D. J., Morris, P. L., Tjian, R., & Richards, J. S. (2005). Maintenance of spermatogenesis requires TAF4b, a gonad-specific subunit of TFIID. Genes & Development, 19(7), 794–803. https://doi.org/10.1101/gad.1290105
  • Filipponi, D., Hobbs, R. M., Ottolenghi, S., Rossi, P., Jannini, E. A., Pandolfi, P. P., & Dolci, S. (2007). Repression of kit expression by Plzf in germ cells. Molecular and Cellular Biology, 27(19), 6770–6781. https://doi.org/10.1128/MCB.00479-07
  • Fischer, S., Kohlhase, J., Böhm, D., Schweiger, B., Hoffmann, D., Heitmann, M., Horsthemke, B., & Wieczorek, D. (2008). Biallelic loss of function of the promyelocytic leukaemia zinc finger (PLZF) gene causes severe skeletal defects and genital hypoplasia. Journal of Medical Genetics, 45(11), 731–737. https://doi.org/10.1136/jmg.2008.059451
  • Ganjibakhsh, M., Mehraein, F., Koruji, M., Aflatoonian, R., & Farzaneh, P. (2019). Three-dimensional decellularized amnion membrane scaffold promotes the efficiency of male germ cells generation from human induced pluripotent stem cells. Experimental Cell Research, 384(1), 111544. https://doi.org/10.1016/j.yexcr.2019.111544
  • Garcia, T. X., Farmaha, J. K., Kow, S., & Hofmann, M. C. (2014). RBPJ in mouse Sertoli cells is required for proper regulation of the testis stem cell niche. Development, 141(23), 4468–4478. https://doi.org/10.1242/dev.113969
  • Garcia, T. X., Parekh, P., Gandhi, P., Sinha, K., & Hofmann, M. C. (2017). The NOTCH ligand JAG1 regulates GDNF expression in Sertoli cells. Stem Cells and Development, 26(8), 585–598. https://doi.org/10.1089/scd.2016.0318
  • Gargus, E. S., Rogers, H. B., McKinnon, K. E., Edmonds, M. E., & Woodruff, T. K. (2020). Engineered reproductive tissues. Nature Biomedical Engineering, 4(4), 381–393. https://doi.org/10.1038/s41551-020-0525-x
  • Ghanbari, E., Khazaei, M., Ghahremani-Nasab, M., Mehdizadeh, A., & Yousefi, M. (2020). Novel therapeutic approaches of tissue engineering in male infertility. Cell and Tissue Research, 380(1), 31–42. https://doi.org/10.1007/s00441-020-03178-w
  • Gharenaz, N. M., Movahedin, M., & Mazaheri, Z. (2020). Three-dimensional culture of mouse spermatogonial stem cells using a decellularised testicular scaffold. Cell Journal, 21(4), 410–418. https://doi.org/10.22074/cellj.2020.6304
  • Gholami, K., Pourmand, G., Koruji, M., Ashouri, S., & Abbasi, M. (2018). Organ culture of seminiferous tubules using a modified soft agar culture system. Stem Cell Research & Therapy, 9(1), 249. https://doi.org/10.1186/s13287-018-0997-8
  • Gholami, K., Pourmand, G., Koruji, M., Sadighigilani, M., Navid, S., Izadyar, F., & Abbasi, M. (2018). Efficiency of colony formation and differentiation of human spermatogenic cells in two different culture systems. Reproductive Biology, 18(4), 397–403. https://doi.org/10.1016/j.repbio.2018.09.006
  • Goertz, M. J., Wu, Z., Gallardo, T. D., Hamra, F. K., & Castrillon, D. H. (2011). Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. The Journal of Clinical Investigation, 121(9), 3456–3466. https://doi.org/10.1172/JCI57984
  • Gu, B. K., Choi, D. J., Park, S. J., Kim, Y. J., & Kim, C. H. (2018). 3D bioprinting technologies for tissue engineering applications. Advances in Experimental Medicine and Biology, 1078, 15–28. https://doi.org/10.1007/978-981-13-0950-2_2
  • Hanna, E., & Gough, B. (2020). The impact of infertility on men’s work and finances: Findings from a qualitative questionnaire study. Gender, Work & Organization, 27(4), 581–591. https://doi.org/10.1111/gwao.12414
  • He, F., Xiong, W., Yu, X., Espinoza-Lewis, R., Liu, C., Gu, S., Nishita, M., Suzuki, K., Yamada, G., Minami, Y., & Chen, Y. (2008). Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development. Development, 135(23), 3871–3879. https://doi.org/10.1242/dev.025767
  • Helsel, A. R., Yang, Q. E., Oatley, M. J., Lord, T., Sablitzky, F., & Oatley, J. M. (2017). ID4 levels dictate the stem cell state in mouse spermatogonia. Development, 144(4), 624–634. https://doi.org/10.1242/dev.146928
  • Hirai, K., Sasaki, H., Yamamoto, H., Sakamoto, H., Kubota, Y., Kakizoe, T., Terada, M., & Ochiya, T. (2004). HST-1/FGF-4 protects male germ cells from apoptosis under heat-stress condition. Experimental Cell Research, 294(1), 77–85. https://doi.org/10.1016/j.yexcr.2003.11.012
  • Hobbs, R. M., Fagoonee, S., Papa, A., Webster, K., Altruda, F., Nishinakamura, R., Chai, L., & Pandolfi, P. P. (2012). Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell, 10(3), 284–298. https://doi.org/10.1016/j.stem.2012.02.004
  • Huang, Y. H., Chin, C. C., Ho, H. N., Chou, C. K., Shen, C. N., Kuo, H. C., Wu, T. J., Wu, Y. C., Hung, Y. C., Chang, C. C., & Ling, T. Y. (2009). Pluripotency of mouse spermatogonial stem cells maintained by IGF-1- dependent pathway. FASEB Journal, 23(7), 2076–2087. https://doi.org/10.1096/fj.08-121939
  • Huh, D., Hamilton, G. A., & Ingber, D. E. (2011). From 3D cell culture to organs-on-chips. Trends in Cell Biology, 21(12), 745–754. https://doi.org/10.1016/j.tcb.2011.09.005
  • Ibtisham, F., Wu, J., Xiao, M., An, L., Banker, Z., Nawab, A., Zhao, Y., & Li, G. (2017). Progress and future prospect of in vitro spermatogenesis. Oncotarget, 8(39), 66709–66727. https://doi.org/10.18632/oncotarget.19640
  • Ishii, K., Kanatsu-Shinohara, M., Toyokuni, S., & Shinohara, T. (2012). FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development, 139(10), 1734–1743. https://doi.org/10.1242/dev.076539
  • Jalayeri, M., Pirnia, A., Najafabad, E. P., Varzi, A. M., & Gholami, M. (2017). Evaluation of alginate hydrogel cytotoxicity on three-dimensional culture of type A spermatogonial stem cells. International Journal of Biological Macromolecules, 95, 888–894. https://doi.org/10.1016/j.ijbiomac.2016.10.074
  • Junankar, S., Baker, L. A., Roden, D. L., Nair, R., Elsworth, B., Gallego-Ortega, D., Lacaze, P., Cazet, A., Nikolic, I., Teo, W. S., Yang, J., McFarland, A., Harvey, K., Naylor, M. J., Lakhani, S. R., Simpson, P. T., Raghavendra, A., Saunus, J., Madore, J., … Swarbrick, A. (2015). ID4 controls mammary stem cells and marks breast cancers with a stem cell-like phenotype. Nature Communications, 6(1), 6548. https://doi.org/10.1038/ncomms7548
  • Kasman, A. M., Del Giudice, F., & Eisenberg, M. L. (2020). New insights to guide patient care: The bidirectional relationship between male infertility and male health. Fertility and Sterility, 113(3), 469–477. https://doi.org/10.1016/j.fertnstert.2020.01.002
  • Kim, Y. H., Oh, M. G., Bhang, D. H., Kim, B. J., Jung, S. E., Kim, S. M., Dohr, G., Kim, S. U., Ryeom, S., & Ryu, B. Y. (2019). Testicular endothelial cells promote self-renewal of spermatogonial stem cells in rats. Biology of Reproduction, 101(2), 360–367. https://doi.org/10.1093/biolre/ioz105
  • Kitadate, Y., Jörg, D. J., Tokue, M., Maruyama, A., Ichikawa, R., Tsuchiya, S., Segi-Nishida, E., Nakagawa, T., Uchida, A., Kimura-Yoshida, C., Mizuno, S., Sugiyama, F., Azami, T., Ema, M., Noda, C., Kobayashi, S., Matsuo, I., Kanai, Y., Nagasawa, T., … Yoshida, S. (2019). Competition for Mitogens regulates spermatogenic stem cell homeostasis in an open niche. Cell Stem Cell, 24(1), 79–92.e6. https://doi.org/10.1016/j.stem.2018.11.013
  • Kokkinaki, M., Lee, T.-L., He, Z., Jiang, J., Golestaneh, N., Hofmann, M.-C., Chan, W.-Y., & Dym, M. (2009). The molecular signature of spermatogonial stem/progenitor cells in the 6-day-old mouse testis. Biology of Reproduction, 80(4), 707–717. https://doi.org/10.1095/biolreprod.108.073809
  • Komeya, M., Sato, T., & Ogawa, T. (2018). In vitro spermatogenesis: A century‐long research journey, still half way around. Reproductive Medicine and Biology, 17(4), 407–420. https://doi.org/10.1002/rmb2.12225
  • Kopera, I. A., Bilinska, B., Cheng, C. Y., & Mruk, D. D. (2010). Sertoli–germ cell junctions in the testis: A review of recent data. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365(1546), 1593–1605. https://doi.org/10.1098/rstb.2009.0251
  • Kubota, H., Avarbock, M. R., & Brinster, R. L. (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences of the United States of America, 101(47), 16489–16494. https://doi.org/10.1073/pnas.0407063101
  • Kuo, C. Y., Eranki, A., Placone, J. K., Rhodes, K. R., Aranda-Espinoza, H., Fernandes, R., Fisher, J. P., & Kim, P. C. W. (2016). Development of a 3D printed, bioengineered placenta model to evaluate the role of trophoblast migration in preeclampsia. ACS Biomaterials Science & Engineering, 2(10), 1817–1826. https://doi.org/10.1021/acsbiomaterials.6b00031
  • Kuo, C. Y., Shevchuk, M., Opfermann, J., Guo, T., Santoro, M., Fisher, J. P., & Kim, P. C. (2019). Trophoblast–endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model. Biotechnology and Bioengineering, 116(1), 181–192. https://doi.org/10.1002/bit.26850
  • Kurek, M. (2019). Laminins in stemness and germ cell development in human [Doctoral Dissertation]. Karolinska Institutet. http://hdl.handle.net/10616/46854
  • La, H. M., Chan, A.-L., Legrand, J. M., Rossello, F. J., Gangemi, C. G., Papa, A., Cheng, Q., Morand, E. F., & Hobbs, R. M. (2018). GILZ-dependent modulation of mTORC1 regulates spermatogonial maintenance. Development, 145(18), dev165324. https://doi.org/10.1242/dev.165324
  • La, H. M., & Hobbs, R. M. (2019). Mechanisms regulating mammalian spermatogenesis and fertility recovery following germ cell depletion. Cellular and Molecular Life Sciences, 76(20), 4071–4102. https://doi.org/10.1007/s00018-019-03201-6
  • La, H. M., Mäkelä, J.-A., Chan, A.-L., Rossello, F. J., Nefzger, C. M., Legrand, J. M., De Seram, M., Polo, J. M., & Hobbs, R. M. (2018). Identification of dynamic undifferentiated cell states within the male germline. Nature Communications, 9(1), 2819. https://doi.org/10.1038/s41467-018-04827-z
  • Lane, S. W., Williams, D. A., & Watt, F. M. (2014). Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 32(8), 795–803. https://doi.org/10.1038/nbt.2978
  • Laronda, M. M., Rutz, A. L., Xiao, S., Whelan, K. A., Duncan, F. E., Roth, E. W., Woodruff, T. K., & Shah, R. N. (2017). A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nature Communications, 8(1), 15261. https://doi.org/10.1038/ncomms15261
  • Lee, J. H., Gye, M. C., Choi, K. W., Hong, J. Y., Lee, Y. B., Park, D. W., Lee, S. J., & Min, C. K. (2007). In vitro differentiation of germ cells from nonobstructive azoospermic patients using three-dimensional culture in a collagen gel matrix. Fertility and Sterility, 87(4), 824–833. https://doi.org/10.1016/j.fertnstert.2006.09.015
  • Lee, J., Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Miki, H., Toyokuni, S., Kimura, T., Nakano, T., Ogura, A., & Shinohara, T. (2007). Akt mediates self-renewal division of mouse spermatogonial stem cells. Development, 134(10), 1853–1859. https://doi.org/10.1242/dev.003004
  • Lee, D. R., Kaproth, M. T., & Parks, J. E. (2001). In vitro production of haploid germ cells from fresh or frozen-thawed testicular cells of neonatal bulls. Biology of Reproduction, 65(3), 873–878. https://doi.org/10.1095/biolreprod65.3.873
  • Lee, J. H., Kim, H. J., Kim, H., Lee, S. J., & Gye, M. C. (2006). In vitro spermatogenesis by three-dimensional culture of rat testicular cells in collagen gel matrix. Biomaterials, 27(14), 2845–2853. https://doi.org/10.1016/j.biomaterials.2005.12.028
  • Lee, J. H., Oh, J. H., Lee, J. H., Kim, M. R., & Min, C. K. (2011). Evaluation of in vitro spermatogenesis using poly (D, L‐lactic‐co‐glycolic acid) (PLGA)‐based macroporous biodegradable scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 5(2), 130–137. https://doi.org/10.1002/term.297
  • Li, X., Tian, E., Wang, Y., Wen, Z., Lei, Z., Zhong, Y., & Ge, R. S. (2022). Stem Leydig cells: Current research and future prospects of regenerative medicine of male reproductive health. Seminars in Cell & Developmental Biology, 121, 63–70. https://doi.org/10.1016/j.semcdb.2021.05.007
  • Liao, S., Li, B., Ma, Z., Wei, H., Chan, C., & Ramakrishna, S. (2006). Biomimetic electrospun nanofibers for tissue regeneration. Biomedical Materials, 1(3), R45–R53. https://doi.org/10.1088/1748-6041/1/3/R01
  • Lin, H. (2002). The stem-cell niche theory: Lessons from flies. Nature Reviews. Genetics, 3(12), 931–940. https://doi.org/10.1038/nrg952
  • Lispi, M., Drakopoulos, P., Spaggiari, G., Caprio, F., Colacurci, N., Simoni, M., & Santi, D. (2022). Testosterone serum levels are related to sperm DNA fragmentation index reduction after FSH administration in males with idiopathic infertility. Biomedicines, 10(10), 2599. https://doi.org/10.3390/biomedicines10102599
  • Liu, B., Shen, L. J., Zhao, T. X., Sun, M., Wang, J. K., Long, C. L., He, D. W., Lin, T., Wu, S. D., & Wei, G. H. (2020). Automobile exhaust-derived PM2.5 induces blood-testis barrier damage through ROS-MAPK-Nrf2 pathway in sertoli cells of rats. Ecotoxicology and Environmental Safety, 189, 110053. https://doi.org/10.1016/j.ecoenv.2019.110053
  • Longo, U. G., Lamberti, A., Petrillo, S., Maffulli, N., & Denaro, V. (2012). Scaffolds in tendon tissue engineering. Stem Cells International, 2012, 517165–517168. https://doi.org/10.1155/2012/517165
  • Lovasco, L. A., Gustafson, E. A., Seymour, K. A., de Rooij, D. G., & Freiman, R. N. (2015). TAF4b is required for mouse spermatogonial stem cell development. Stem Cells, 33(4), 1267–1276. https://doi.org/10.1002/stem.1914
  • Lovelace, D. L., Gao, Z., Mutoji, K., Song, Y. C., Ruan, J., & Hermann, B. P. (2016). The regulatory repertoire of PLZF and SALL4 in undifferentiated spermatogonia. Development, 143(11), 1893–1906. https://doi.org/10.1242/dev.132761
  • Lu, N., Sargent, K. M., Clopton, D. T., Pohlmeier, W. E., Brauer, V. M., McFee, R. M., Weber, J. S., Ferrara, N., Silversides, D. W., & Cupp, A. S. (2013). Loss of vascular endothelial growth factor A (VEGFA) isoforms in the testes of male mice causes subfertility, reduces sperm numbers, and alters expression of genes that regulate undifferentiated spermatogonia. Endocrinology, 154(12), 4790–4802. https://doi.org/10.1210/en.2013-1363
  • Ma, X. M., & Blenis, J. (2009). Molecular mechanisms of mTOR-mediated translational control. Nature Reviews. Molecular Cell Biology, 10(5), 307–318. https://doi.org/10.1038/nrm2672
  • Mäkelä, J. A., & Hobbs, R. M. (2019). Molecular regulation of spermatogonial stem cell renewal and differentiation. Reproduction, 158(5), R169–R187. https://doi.org/10.1530/REP-18-0476
  • Martinez, M. P., Elbardisi, H., Majzoub, A., & Arafa, M. (2020). Epidemiology of genetic disorders in male infertility. In M. Arafa, H. Elbardisi, A. Majzoub, & A. Agarwal (Eds.), Genetics of male infertility a case-based guide for clinicians (pp. 73–94). Springer. https://doi.org/10.1007/978-3-030-37972-8_5
  • Martínez-Hernández, J., Seco-Rovira, V., Beltrán-Frutos, E., Ferrer, C., Serrano-Sánchez, M. I., & Pastor, L. M. (2020). Proliferation, apoptosis, and number of Sertoli cells in the Syrian hamster during recrudescence after exposure to short photoperiod. Biology of Reproduction, 102(3), 588–597. https://doi.org/10.1093/biolre/ioz198
  • Masaki, K., Sakai, M., Kuroki, S., Jo, J. I., Hoshina, K., Fujimori, Y., Oka, K., Amano, T., Yamanaka, T., Tachibana, M., Tabata, Y., Shiozawa, T., Ishizuka, O., Hochi, S., & Takashima, S. (2018). FGF2 has distinct molecular functions from GDNF in the mouse germline niche. Stem Cell Reports, 10(6), 1782–1792. https://doi.org/10.1016/j.stemcr.2018.03.016
  • Mei, X. X., Wang, J., & Wu, J. (2015). Extrinsic and intrinsic factors controlling spermatogonial stem cell self-renewal and differentiation. Asian Journal of Andrology, 17(3), 347–354. https://doi.org/10.4103/1008-682X.148080
  • Meng, X., Lindahl, M., Hyvönen, M. E., Parvinen, M., de Rooij, D. G., Hess, M. W., Raatikainen-Ahokas, A., Sainio, K., Rauvala, H., Lakso, M., Pichel, J. G., Westphal, H., Saarma, M., & Sariola, H. (2000). Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science, 287(5457), 1489–1493. https://doi.org/10.1126/science.287.5457.1489
  • Mithraprabhu, S., & Loveland, K. L. (2009). Control of KIT signaling in male germ cells: What can we learn from other systems? Reproduction, 138(5), 743–757. https://doi.org/10.1530/REP-08-0537
  • Mohammadzadeh, E., Mirzapour, T., Nowroozi, M. R., Nazarian, H., Piryaei, A., Alipour, F., Modarres Mousavi, S. M., & Ghaffari Novin, M. (2019). Differentiation of spermatogonial stem cells by soft agar three-dimensional culture system. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1772–1781. https://doi.org/10.1080/21691401.2019.1575230
  • Murdock, M. H., David, S., Swinehart, I. T., Reing, J. E., Tran, K., Gassei, K., Orwig, K. E., & Badylak, S. F. (2019). Human testis extracellular matrix enhances human spermatogonial stem cell survival in vitro. Tissue Engineering. Part A, 25(7–8), 663–676. https://doi.org/10.1089/ten.TEA.2018.0147
  • Nakagawa, T., Sharma, M., Nabeshima, Y., Braun, R. E., & Yoshida, S. (2010). Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science, 328(5974), 62–67. https://doi.org/10.1126/science.1182868
  • Navid, S., Abbasi, M., & Hoshino, Y. (2017). The effects of melatonin on colonization of neonate spermatogonial mouse stem cells in a three-dimensional soft agar culture system. Stem Cell Research & Therapy, 8(1), 233. https://doi.org/10.1186/s13287-017-0687-y
  • Ni, F. D., Hao, S. L., & Yang, W. X. (2019). Multiple signaling pathways in Sertoli cells: Recent findings in spermatogenesis. Cell Death & Disease, 10(8), 541. https://doi.org/10.1038/s41419-019-1782-z
  • Nowak, D. G., Woolard, J., Amin, E. M., Konopatskaya, O., Saleem, M. A., Churchill, A. J., Ladomery, M. R., Harper, S. J., & Bates, D. O. (2008). Expression of pro-and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. Journal of Cell Science, 121(Pt 20), 3487–3495. https://doi.org/10.1242/jcs.016410
  • Oatley, J. M., Avarbock, M. R., & Brinster, R. L. (2007). Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. The Journal of Biological Chemistry, 282(35), 25842–25851. https://doi.org/10.1074/jbc.M703474200
  • Oatley, M. J., Kaucher, A. V., Racicot, K. E., & Oatley, J. M. (2011). Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biology of Reproduction, 85(2), 347–356. https://doi.org/10.1095/biolreprod.111.091330
  • Oatley, J. M., Oatley, M. J., Avarbock, M. R., Tobias, J. W., & Brinster, R. L. (2009). Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development, 136(7), 1191–1199. https://doi.org/10.1242/dev.032243
  • O’Donnell, L., Pratis, K., Wagenfeld, A., Gottwald, U., Müller, J., Leder, G., McLachlan, R. I., & Stanton, P. G. (2009). Transcriptional profiling of the hormone-responsive stages of spermatogenesis reveals cell-, stage-, and hormone-specific events. Endocrinology, 150(11), 5074–5084. https://doi.org/10.1210/en.2009-0755
  • Parent-Massin, D. (2001). Relevance of clonogenic assays in hematotoxicology. Cell Biology and Toxicology, 17(2), 87–94. https://doi.org/10.1023/a:1010906104558
  • Park, M. H., Park, J. E., Kim, M. S., Lee, K. Y., Hwang, J. Y., Yun, J. I., Choi, J. H., Lee, E., & Lee, S. T. (2016). Effects of extracellular matrix protein-derived signaling on the maintenance of the undifferentiated state of spermatogonial stem cells from porcine neonatal testis. Asian-Australasian Journal of Animal Sciences, 29(10), 1398–1406. https://doi.org/10.5713/ajas.15.0856
  • Park, J. E., Park, M. H., Kim, M. S., Park, Y. R., Yun, J. I., Cheong, H. T., Kim, M., Choi, J. H., Lee, E., & Lee, S. T. (2017). Porcine spermatogonial stem cells self‐renew effectively in a three dimensional culture microenvironment. Cell Biology International, 41(12), 1316–1324. https://doi.org/10.1002/cbin.10844
  • Paul, K., Darzi, S., McPhee, G., Del Borgo, M. P., Werkmeister, J. A., Gargett, C. E., & Mukherjee, S. (2019). 3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice. Acta Biomaterialia, 97, 162–176. https://doi.org/10.1016/j.actbio.2019.08.003
  • Pei, B., Wang, W., Fan, Y., Wang, X., Watari, F., & Li, X. (2017). Fiber-reinforced scaffolds in soft tissue engineering. Regenerative Biomaterials, 4(4), 257–268. https://doi.org/10.1093/rb/rbx021
  • Pellegrini, M., Grimaldi, P., Rossi, P., Geremia, R., & Dolci, S. (2003). Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: A potential role of BMP4 in spermatogonia differentiation. Journal of Cell Science, 116(Pt 16), 3363–3372. https://doi.org/10.1242/jcs.00650
  • Pelletier, R.-M. (2011). The blood-testis barrier: The junctional permeability, the proteins and the lipids. Progress in Histochemistry and Cytochemistry, 46(2), 49–127. https://doi.org/10.1016/j.proghi.2011.05.001
  • Perrard, M.-H., Sereni, N., Schluth-Bolard, C., Blondet, A., D′ Estaing, S. G., Plotton, I., Morel-Journel, N., Lejeune, H., David, L., & Durand, P. (2016). Complete human and rat ex vivo spermatogenesis from fresh or frozen testicular tissue. Biology of Reproduction, 95(4), 89–89. https://doi.org/10.1095/biolreprod.116.142802
  • Potter, S. J., & DeFalco, T. (2017). Role of the testis interstitial compartment in spermatogonial stem cell function. Reproduction, 153(4), R151–R162. https://doi.org/10.1530/REP-16-0588
  • Pui, H. P., & Saga, Y. (2018). NANOS2 acts as an intrinsic regulator of gonocytes-to-spermatogonia transition in the murine testes. Mechanisms of Development, 149, 27–40. https://doi.org/10.1016/j.mod.2018.01.001
  • Rahimi-Feyli, P., Tajik, P., Shafiei, S., Dodel, M., & Arbabi, F. (2015). The effect of poly L-lactic acid nanofiber on the induction of colony formation of frozen-thawed bovine spermatogonial stem cells in vitro. Feyz Journal of Kashan University of Medical Sciences, 19(1), 15–23. http://feyz.kaums.ac.ir/article-1-2525-en.html
  • Ribeiro, J. C., Martins, A. D., Jarak, I., Carvalho, R. A., Alves, M. G., & Oliveira, P. F. (2022). Exenatide and dapagliflozin combination enhances sertoli cell secretion of key metabolites for spermatogenesis. Biomedicines, 10(5), 1115. https://doi.org/10.3390/biomedicines10051115
  • Richardson, L. L., Kleinman, H. K., & Dym, M. (1995). Basement membrane gene expression by Sertoli and peritubular myoid cells in vitro in the rat. Biology of Reproduction, 52(2), 320–330. https://doi.org/10.1095/biolreprod52.2.320
  • Riera, M., Meroni, S., Pellizzari, E., & Cigorraga, S. (2003). Assessment of the roles of mitogen-activated protein kinase and phosphatidyl inositol 3-kinase/protein kinase B pathways in the basic fibroblast growth factor regulation of Sertoli cell function. Journal of Molecular Endocrinology, 31(2), 279–289. https://doi.org/10.1677/jme.0.0310279
  • Robinson, M., Bedford, E., Witherspoon, L., Willerth, S. M., & Flannigan, R. (2021). Microfluidic bioprinting for the in vitro generation of novel biomimetic human testicular tissues. bioRxiv, 2021.06.04.447126. https://doi.org/10.1101/2021.06.04.447126
  • Sachs, C., Robinson, B. D., Andres Martin, L., Webster, T., Gilbert, M., Lo, H. Y., Rafii, S., Ng, C. K., & Seandel, M. (2014). Evaluation of candidate spermatogonial markers ID 4 and GPR 125 in testes of adult human cadaveric organ donors. Andrology, 2(4), 607–614. https://doi.org/10.1111/j.2047-2927.2014.00226.x
  • Sadeghi, M. R. (2020). A new perspective for the future of male infertility treatment and research. Journal of Reproduction & Infertility, 21(1), 1–2. https://www.jri.ir/article/60072
  • Shakeri, M., Kohram, H., Shahverdi, A., Shahneh, A. Z., Tavakolifar, F., Pirouz, M., Shahrebabak, H. M., Koruji, M., & Baharvand, H. (2013). Behavior of mouse spermatogonial stem-like cells on an electrospun nanofibrillar matrix. Journal of Assisted Reproduction and Genetics, 30(3), 325–332. https://doi.org/10.1007/s10815-012-9916-6
  • Sharma, A., Shah, S. M., Tiwari, M., Roshan, M., Singh, M. K., Singla, S. K., Palta, P., Manik, R. S., & Chauhan, M. S. (2020). Propagation of goat putative spermatogonial stem cells under growth factors defined serum-free culture conditions. Cytotechnology, 72(3), 489–497. https://doi.org/10.1007/s10616-020-00386-8
  • Shima, Y., Miyabayashi, K., Haraguchi, S., Arakawa, T., Otake, H., Baba, T., Matsuzaki, S., Shishido, Y., Akiyama, H., Tachibana, T., Tsutsui, K., & Morohashi, K. (2013). Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Molecular Endocrinology, 27(1), 63–73. https://doi.org/10.1210/me.2012-1256
  • Stukenborg, J. B., Wistuba, J., Luetjens, C. M., Elhija, M. A., Huleihel, M., Lunenfeld, E., Gromoll, J., Nieschlag, E., & Schlatt, S. (2008). Coculture of spermatogonia with somatic cells in a novel three‐dimensional soft‐agar‐culture‐system. Journal of Andrology, 29(3), 312–329. https://doi.org/10.2164/jandrol.107.002857
  • Suarez, P. E., Rodriguez, E. G., Soundararajan, R., Mérillat, A. M., Stehle, J. C., Rotman, S., Roger, T., Voirol, M. J., Wang, J., Gross, O., Pétrilli, V., Nadra, K., Wilson, A., Beermann, F., Pralong, F. P., Maillard, M., Pearce, D., Chrast, R., Rossier, B. C., & Hummler, E. (2012). The glucocorticoid-induced leucine zipper (gilz/Tsc22d3-2) gene locus plays a crucial role in male fertility. Molecular Endocrinology, 26(6), 1000–1013. https://doi.org/10.1210/me.2011-1249
  • Sun, F., Xu, Q., Zhao, D., & Degui Chen, C. (2015). Id4 marks spermatogonial stem cells in the mouse testis. Scientific Reports, 5(1), 17594. https://doi.org/10.1038/srep17594
  • Talebi, A., Gilani, M. A. S., Koruji, M., Ai, J., Rezaie, M. J., Navid, S., Salehi, M., & Abbasi, M. (2019). Colonization of mouse spermatogonial cells in modified soft agar culture system utilizing nanofibrous scaffold: A new approach. Galen Medical Journal, 8, e1319. https://doi.org/10.31661/gmj.v8i0.1319
  • Talebi, A., Sadighi-Gilani, M. A., Koruji, M., Ai, J., Navid, S., Rezaie, M. J., Jabari, A., Ashouri-Movassagh, S., Khadivi, F., Salehi, M., Hoshino, Y., & Abbasi, M. (2019). Proliferation and differentiation of mouse spermatogonial stem cells on a three-dimensional surface composed of PCL/gel nanofibers. International Journal of Morphology, 37(3), 1132–1141. https://doi.org/10.4067/S0717-95022019000301132
  • Tan, K. A., De Gendt, K., Atanassova, N., Walker, M., Sharpe, R. M., Saunders, P. T., Denolet, E., & Verhoeven, G. (2005). The role of androgens in Sertoli cell proliferation and functional maturation: Studies in mice with total or Sertoli cell-selective ablation of the androgen receptor. Endocrinology, 146(6), 2674–2683. https://doi.org/10.1210/en.2004-1630
  • Umaoka, A., Takeuchi, H., Mizutani, K., Seo, N., Matsushima, Y., Habe, K., Hagimori, K., Yamaguchi, Y., Ikeda, T., & Yamanaka, K. (2020). Skin inflammation and testicular function: Dermatitis causes male infertility via skin-derived cytokines. Biomedicines, 8(9), 293. https://doi.org/10.3390/biomedicines8090293
  • van Pelt, A. M., & de Rooij, D. G. (1990). Synchronization of the seminiferous epithelium after vitamin A replacement in vitamin A-deficient mice. Biology of Reproduction, 43(3), 363–367. https://doi.org/10.1095/biolreprod43.3.363
  • Vardiani, M., Gholipourmalekabadi, M., Ghaffari Novin, M., Koruji, M., Ghasemi Hamidabadi, H., Salimi, M., & Nazarian, H. (2019). Three‐dimensional electrospun gelatin scaffold coseeded with embryonic stem cells and sertoli cells: A promising substrate for in vitro coculture system. Journal of Cellular Biochemistry, 120(8), 12508–12518. https://doi.org/10.1002/jcb.28517
  • Vermeulen, M., Poels, J., De Michele, F., Des Rieux, A., & Wyns, C. (2017). Restoring fertility with cryopreserved prepubertal testicular tissue: Perspectives with hydrogel encapsulation, nanotechnology, and bioengineered scaffolds. Annals of Biomedical Engineering, 45(7), 1770–1781. https://doi.org/10.1007/s10439-017-1789-5
  • Vijayavenkataraman, S., Yan, W. C., Lu, W. F., Wang, C. H., & Fuh, J. Y. H. (2018). 3D bioprinting of tissues and organs for regenerative medicine. Advanced Drug Delivery Reviews, 132, 296–332. https://doi.org/10.1016/j.addr.2018.07.004
  • Vincent, S., Segretain, D., Nishikawa, S., Nishikawa, S.-I., Sage, J., Cuzin, F., & Rassoulzadegan, M. (1998). Stage-specific expression of the Kit receptor and its ligand (KL) during male gametogenesis in the mouse: A Kit-KL interaction critical for meiosis. Development, 125(22), 4585–4593. https://doi.org/10.1242/dev.125.22.4585
  • Wang, Y. Q., Chen, S. R., & Liu, Y. X. (2018). Selective deletion of WLS in peritubular myoid cells does not affect spermatogenesis or fertility in mice. Molecular Reproduction and Development, 85(7), 559–561. https://doi.org/10.1002/mrd.22988
  • Wang, M., Guo, Y., Wang, M., Zhou, T., Xue, Y., Du, G., Wei, X., Wang, J., Qi, L., Zhang, H., Li, L., Ye, L., Guo, X., & Wu, X. (2017). The glial cell-derived neurotrophic factor (GDNF)-responsive phosphoprotein landscape identifies raptor phosphorylation required for spermatogonial progenitor cell proliferation. Molecular & Cellular Proteomics, 16(6), 982–997. https://doi.org/10.1074/mcp.M116.065797
  • Wang, X. Y., Xing, X., Zhou, G. D., Liu, W., & Cao, Y. L. (2007). Androgen-secreting tissue construction with co-cultured rat testes somatic cells by tissue engineering technique. Zhonghua Yi Xue Za Zhi, 87(31), 2223–2227.
  • Wang, H., Yuan, Q., Sun, M., Niu, M., Wen, L., Fu, H., Zhou, F., Chen, Z., Yao, C., Hou, J., Shen, R., Lin, Q., Liu, W., Jia, R., Li, Z., & He, Z. (2017). BMP6 regulates proliferation and apoptosis of human sertoli cells via Smad2/3 and Cyclin D1 pathway and DACH1 and TFAP2A activation. Scientific Reports, 7(1), 45298. https://doi.org/10.1038/srep45298
  • Weinbauer, G., & Wessels, J. (1999). ‘Paracrine’ control of spermatogenesis. Andrologia, 31(5), 249–262. https://doi.org/10.1046/j.1439-0272.1999.00295.x
  • Wu, J., Zhang, Y., Tian, G. G., Zou, K., Lee, C. M., Yu, Q., & Yuan, Z. (2008). Short-type PB-cadherin promotes self-renewal of spermatogonial stem cells via multiple signaling pathways. Cellular Signalling, 20(6), 1052–1060. https://doi.org/10.1016/j.cellsig.2008.01.011
  • Yang, Q. E., Kim, D., Kaucher, A., Oatley, M. J., & Oatley, J. M. (2013). CXCL12-CXCR4 signaling is required for the maintenance of mouse spermatogonial stem cells. Journal of Cell Science, 126(Pt 4), 1009–1020. https://doi.org/10.1242/jcs.119826
  • Yeh, J. R., Zhang, X., & Nagano, M. C. (2011). Wnt5a is a cell-extrinsic factor that supports self-renewal of mouse spermatogonial stem cells. Journal of Cell Science, 124(Pt 14), 2357–2366. https://doi.org/10.1242/jcs.080903
  • Yokonishi, T., McKey, J., Ide, S., & Capel, B. (2020). Sertoli cell ablation and replacement of the spermatogonial niche in mouse. Nature Communications, 11(1), 40. https://doi.org/10.1038/s41467-019-13879-8
  • Yokonishi, T., Sato, T., Katagiri, K., Komeya, M., Kubota, Y., & Ogawa, T. (2013). In vitro reconstruction of mouse seminiferous tubules supporting germ cell differentiation. Biology of Reproduction, 89(1), 15. https://doi.org/10.1095/biolreprod.113.108613
  • Yoshida, S., Sukeno, M., & Nabeshima, Y. (2007). A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science, 317(5845), 1722–1726. https://doi.org/10.1126/science.1144885
  • Yoshinaga, K., Nishikawa, S., Ogawa, M., Hayashi, S., Kunisada, T., Fujimoto, T., & Nishikawa, S. (1991). Role of c-kit in mouse spermatogenesis: Identification of spermatogonia as a specific site of c-kit expression and function. Development, 113(2), 689–699. https://doi.org/10.1242/dev.113.2.689
  • Zhao, Y., Zhang, P., Ge, W., Feng, Y., Li, L., Sun, Z., Zhang, H., & Shen, W. (2020). Alginate oligosaccharides improve germ cell development and testicular microenvironment to rescue busulfan disrupted spermatogenesis. Theranostics, 10(7), 3308–3324. https://doi.org/10.7150/thno.43189
  • Zhou, Z., Shirakawa, T., Ohbo, K., Sada, A., Wu, Q., Hasegawa, K., Saba, R., & Saga, Y. (2015). RNA binding protein Nanos2 organizes post-transcriptional buffering system to retain primitive state of mouse spermatogonial stem cells. Developmental Cell, 34(1), 96–107. https://doi.org/10.1016/j.devcel.2015.05.014
  • Zhou, R., Wu, J., Liu, B., Jiang, Y., Chen, W., Li, J., He, Q., & He, Z. (2019). The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cellular and Molecular Life Sciences, 76(14), 2681–2695. https://doi.org/10.1007/s00018-019-03101-9
  • Ziloochi Kashani, M., Bagher, Z., Asgari, H. R., Najafi, M., Koruji, M., & Mehraein, F. (2020). Differentiation of neonate mouse spermatogonial stem cells on three-dimensional agar/polyvinyl alcohol nanofiber scaffold. Systems Biology in Reproductive Medicine, 66(3), 202–215. https://doi.org/10.1080/19396368.2020.1725927

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.