9
Views
3
CrossRef citations to date
0
Altmetric
Reviews

DC in multiple myeloma immunotherapy

, , &
Pages 128-137 | Published online: 07 Jul 2009

References

  • Kumar A, Loughran T, Alsina M et al. Management of multiple myeloma: a systematic review and critical appraisal of published studies. Lancet Oncol 2003;4:293— 304.
  • Luznik L, Fuchs EJ. Donor lymphocyte infusions to treat hematologic malignancies in relapse after allogeneic blood or marrow transplantation. Cancer Control 2002;9:123— 37.
  • Hart DN. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 1997;90:3245–87.
  • Turtle CJ, Hart DNJ. Dendritic cells in tumor immunology and immunotherapy. Current Drug Targets 2004;5:17— 39.
  • Hart DN, Hill GR. Dendritic cell immunotherapy for cancer: application to low-grade lymphoma and multiple myeloma. Immunol Cell Biol 1999;77:451 — 9.
  • Lauta VM. A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer 2003;97:2440— 52.
  • Hayashi T, Hideshima T, Akiyama M, et al. Ex vivo induction ofmultiple myeloma-specific cytotoxic T lymphocytes. Blood 2003;102:1435–42.
  • Ratta M, Fagnoni F, Curti A et al. Dendritic cells are functionally defective in multiple myeloma: the role of inter-leukin-6. Blood 2002;100:230— 7.
  • Chomarat P, Banchereau J, Davoust J et al. IL-6 switches the differentiation of monocytes from dendritic cells to macro-phages. Nat Immunol 2000;1:510–4.
  • Menetrier-Caux C, Montmain G, Dieu MC et al. Inhibition ofthe differentiation of dendritic cells from CD34(± ) progenitors by rumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 1998;92:4778— 91.
  • Menetrier-Caux C, Thomachot MC, Alberti L et al. IL-4 prevents the blockade of dendritic cell differentiation induced by rumor cells. Cancer Res 2001;61:3096— 104.
  • Xie J, Wang Y, Freeman ME, 3rd, et al. Beta 2-microglobulin as a negative regulator of the immune system: high concentrations of the protein inhibit in vitro generation of functional dendritic cells. Blood 2003;101: 4005— 12.
  • Brown RD, Pope B, Murray A et al. Dendritic cells from patientswith myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD4OLT stimulation because of inhibition by transforming growth factor-beta(1) and interleukin-10. Blood 2001;98:2992— 8.
  • Pfeiffer S, Gooding RP, Apperley JF et al. Dendritic cells generated from the blood of patients with multiple myeloma are phenotypically and functionally identical to those similarly produced from healthy donors. Br y Haematol 1997;98:973— 82.
  • Raje N, Gong J, Chauhan D et al. Bone marrow and peripheralblood dendritic cells from patients with multiple myeloma are phenotypically and functionally normal despite the detection of Kaposi's sarcoma herpesvirus gene sequences. Blood 1999;93:1487–95.
  • Vuckovic S, Kim M, Khalil D et al. Granulocyte-colony stimulating factor increases CD123hi blood dendritic cells with altered CD62L and CCR7 expression. Blood 2003;101: 2314–7.
  • Fearnley DB, Whyte LF, Carnoutsos SA et al. Monitoring humanblood dendritic cell numbers in normal individuals and in stem cell transplantation. Blood 1999;93:728— 36.
  • Shodell M, Shah K, Siegal FP. Circulating human plasmacytoid dendritic cells are highly sensitive to corticosteroid administra-tion. Lupus 2003;12:222— 30.
  • Woltman AM, Massacrier C, de Fijter JW et al. Corticosteroidsprevent generation of CD34 ± -derived dermal dendritic cells but do not inhibit Langerhans cell development. 7 Immunol 2002;168:6181–8.
  • Yawalkar N, Karlen S, Egli F et al. Down-regulation of IL-12 bytopical corticosteroids in chronic atopic dermatitis. 7Allergy Clin Immunol 2000;106: 941— 7.
  • Frassanito MA, Cusmai A, Dammacco E Deregulated cytokine network and defective Thl immune response in multiple myeloma. Clin Exp Immunol 2001;125:190— 7.
  • Valenzuela J, Schmidt C, Mescher M. The Roles of IL-12 in providing a third signal for clonal expansion of naive CD8 T cells. 7 Immunol 2002;169: 6842— 9.
  • Camporeale A, Boni A, Iezzi G et al. Critical impact of the kinetics of dendritic cells activation on the in vivo induction of rumor-specific T lymphocytes. Cancer Res 2003;63:3688–94.
  • Serra HM, Mant MJ, Ruether BA et al. Selective loss of CD4±CD45R± T cells in peripheral blood of multiple myeloma patients. 7 Clin Immunol 1988;8:259–65.
  • Lauritzsen GF, Hofgaard PO, Schenck K et al. Clonal deletion ofthymocytes as a rumor escape mechanism. Int 7 Cancer 1998;78:216— 22.
  • Brown RD, Pope B, Yuen E et al. The expression of T-cell related costimulatory molecules in multiple myeloma. Leuk Lymphoma 1998;31:379–84.
  • Raitakari M, Brown RD, Sze D et al. T-cell expansions in patients with multiple myeloma have a phenotype of cytotoxic T cells. Br 7 Haematol 2000;110: 203–9.
  • Brown RD, Yuen E, Nelson M et al. The prognostic significanceof T cell receptor beta gene rearrangements and idiotype-reactive T cells in multiple myeloma. Leukemia 1997;11:1312–7.
  • Bomberger C, Singh-Jairam M, Rodey G et al. Lymphoid reconstitution after autologous PBSC transplantation with FAGS-sorted CD34± hematopoietic progenitors. Blood 1998;91:2588–600.
  • Dhodapkar MV, Krasovsky J, Olson K. T cells from the tumormicroenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autolo-gous, rumor-loaded dendritic cells. Proc Natl Acad Sci USA 2002;99:13009–13.
  • Brossart P, Schneider A, Dill P et al. The epithelial tumor antigen MUCI is expressed in hematological malignancies and is recognized by MUG 1-specific cytotoxic T-lymphocytes. Cancer Res 2001;61:6846–50.
  • Chiriva-Internati M, Wang Z, Salati E et al. Sperm protein 17 (Sp17) is a suitable target for immunotherapy of multiple myeloma. Blood 2002;100:961–5.
  • Timmerman JM, Czerwinski DK, Davis TA et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002;99:1517–26.
  • Hsu FJ, Benike C, Fagnoni F et al. Vaccination of patients withB-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996;2:52–7.
  • Yi Q, Desikan R, Barlogie B et al. Optimizing dendritic cell-based immunotherapy in multiple myeloma. Br 7 Haematol 2002;117:297–305.
  • Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S et al.Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2000;6:621–7.
  • Titzer S, Christensen 0, Manzke 0 et al. Vaccination of multiplemyeloma patients with idiotype-pulsed dendritic cells: immu-nological and clinical aspects. Br 7 Haematol 2000;108: 805–16.
  • Reichardt VL, Okada CY, Liso A et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma - a feasibility study. Blood 1999;93:2411–9.
  • Wen YJ, Ling M, Bailey-Wood R et al. Idiotypic protein-pulsedadherent peripheral blood mononuclear cell- derived dendritic cells prime immune system in multiple myeloma. Clin Cancer Res 1998;4:957–62.
  • Lim SH, Bailey-Wood R. Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Int y Cancer 1999;83:215–22.
  • Butch AW, Kelly KA, Munshi NC. Dendritic cells derived from multiple myeloma patients efficiently internalize different classes of myeloma protein. Exp Hematol 2001;29:85–92.
  • Wen YJ, Barlogie B, Yi fit Idiotype-specific cytotoxic T lymphocytes in multiple myeloma: evidence for their capacity to lyse autologous primary rumor cells. Blood 2001;97:1750–5.
  • Ratta M, Curti A, Fogli M et al. Efficient presentation of rumor idiotype to autologous T cells by CD83(± ) dendritic cells derived from highly purified circulating CD14(± ) monocytes in multiple myeloma patients. Exp Hematol 2000;28:931–40.
  • Li Y, Bendandi M, Deng Y et al. Tumor-specific recognition of human myeloma cells by idiotype-induced CD8(± ) T cells. Blood 2000;96:2828–33.
  • Galea HR, Denizot Y, Cogne M. Light chain myeloma plasma cells induce a strong cell-mediated immune response mainly directed against the monoclonal light chain determinants in a murine experimental model. Cancer Immunol Immunother 2002;51:229–34.
  • Sze DM-Y, Brown RD, Yang S et al. Prediction of high affinityclass I-restricted multiple myeloma idiotype peptide epitopes. Leuk Lymphoma 2003;44:1557–68.
  • Pellat-Deceunynck C. Tumour-associated antigens in multiple myeloma. Br y Haematol 2003;120:3–9.
  • Brossart P, Heinrich KS, Sruhler G et al. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC 1 rumor antigen for broadly applicable vaccine therapies. Blood 1999;93:4309–17.
  • Heukamp LC, van der Burg SH, Drijfhout JW et al. Identifica-tion of three non-VNTR MUC I -derived H LA-A*0201-restricted T-cell epitopes that induce protective anti-tumor immunity in HLA-A2/K(b)-transgenic mice. Int 7 Cancer 2001;91: 385–92.
  • Wykes M, MacDonald KP, Tran M et al. MUCI epithelial mucin(CD227) is expressed by activated dendritic cells. 7 Leukoc Biol 2002;72:692–701.
  • Ho SB, Niehans GA, Lyftogt C et al. Heterogeneity of mucingene expression in normal and neoplastic tissues. Cancer Res 1993;53:641–51.
  • Xu D, Zheng C, Bergenbrant S et al. Telomerase activity in plasma cell dyscrasias. Br 7 Cancer 2001;84:621–5.
  • Vonderheide RH, Hahn WC, Schultze JL et al. The telomerasecatalytic subunit is a widely expressed rumor-associated antigen recognized by cytotoxic T lymphocytes. Immunio, 1999;10:673–9.
  • Scardino A, Gross DA, Alves P et al. HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum rumor immunotherapy. 7 Immunol 2002;168: 5900–6.
  • van Baren N, Chambost H, Ferrant A et al. PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br Haematol 1998;102:1376–9.
  • Kessler JH, Beekman NJ, Bres-Vloemans SA et al. Efficient identification of novel HLA-A)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed rumor antigen PRAME by proteasome-mediated digestion analysis. 7 Exp Med 2001;193:73–88.
  • Matsushita M, Yamazaki R, Ikeda H et al. Preferentially expressed antigen of melanoma (PRAME) in the development of diagnostic and therapeutic methods for hematological malignancies. Leuk Lymphoma 2003;44:439–44.
  • Pellat-Deceunynck C, Mellerin MP, Labarriere N et al. The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells. Eur 7 Immunol 2000;30:803— 9.
  • Lim SH, Wang Z, Chiriva-Internati M et al. Sperm protein 17 isa novel cancer-testis antigen in multiple myeloma. Blood 2001;97:1508— 10.
  • Lacy HM, Sanderson RD. Sperm protein 17 is expressed on normal and malignant lymphocytes and promotes heparan sulfate-mediated cell-cell adhesion. Blood 200198:2160–5.
  • Grizzi F, Lim SH, Chiriva-Internati M, et al. Sperm protein 17 isnot expressed on normal leukocytes. Blood 2002;99:3479— 80 [author reply 3480— 1].
  • Chiriva-Internati M, Wang Z, Xue Y et al. Sperm protein 17 (Sp17) in multiple myeloma: opportunity for myeloma-specific donor T cell infusion to enhance graft-versus-myeloma effect without increasing graft-versus-host disease risk. Eur 7 Immunol 2001;31:2277— 83.
  • Chiriva-Internati M, Wang Z, Salati E et al. Successful generation of sperm protein 17 (5p17)-specific cytotoxic T lymphocytes from normal donors: implication for tumour-specific adoptive immunotherapy following allogeneic stem cell transplantation for Sp17-positive multiple myeloma. Scand Immunol 2002;56:429— 33.
  • van Baren N, Brasseur F', Godelaine D et al. Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood 1999;94:1156— 64.
  • Marijt WA, Heemskerk MH, Kloosterboer FM et al. Hemato-poiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 2003;100:2742— 7.
  • Dhodapkar KM, Krasovsky J, Williamson B et al. Antitumor monoclonal antibodies enhance cross-presentation ofcCellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. yExp Med 2002;195:125–33.
  • Milazzo C, Reichardt VL, Muller MR et al. Induction of myeloma-specific cytotoxic T cells using dendritic cells trans-fected with tumor-derived RNA. Blood 2003;101:977–82.
  • Osman Y, Takahashi M, Zheng Z et al. Activation of autologousor HLA-identical sibling cytotoxic T lymphocytes by blood derived dendritic cells pulsed with tumor cell extracts. Oncol Rep 1999;6:1057–63.
  • Wen YJ, Min R, Tricot G et al. Tumor lysate-specific cytotoxicT lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood 2002;99:3280— 5.
  • Douek DC, Vescio RA, Betts MR et al. Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet 2000;355:1875–81.
  • Rutella S, Pierelli L, Sica S et al. Transplantation of autologousperipheral blood progenitor cells: impact of CD34-cell selection on immunological reconstitution. Leuk Lymphoma 2001;42:1207–20.
  • Motta MR, Castellani S, Rizzi S et al. Generation of dendriticcells from CD14± monocytes positively selected by immuno-magnetic adsorption for multiple myeloma patients enrolled in a clinical trial of anti-idiotype vaccination. Br y Haematol 2003;121:240— 50.
  • Choi D, Perrin M, Hoffmann S et al. Dendritic cell-based vaccines in the setting of peripheral blood stem cell transplanta-tion: CD34± cell-depleted mobilized peripheral blood can serve as a source of potent dendritic cells. Clin Cancer Res 1998;4:2709— 16.
  • Barrow L, Brown RD, Murray A et al. CMRF44± dendritic cellsfrom peripheral blood stem cell harvests of patients with myeloma as potential cellular vectors for idiotype vaccination. Leuk Lymphoma 2003;44:2117–22.
  • Damiani D, Stocchi R, Masolini P et al. CD34± -selected versusunmanipulated autologous stem cell transplantation in multiple myeloma: impact on dendritic and immune recovery and on complications due to infection. Ann Oncol 2003;14:475— 80.
  • Cull G, Durrant L, Stainer C et al. Generation of anti-idiotypeimmune responses following vaccination with idiotype-protein pulsed dendritic cells in myeloma. Br 7 Haematol 1999;107:648–55.
  • Rice A, Hart D. Technology evaluation: APC-80200, Dendreon. Curr Opin Mol Ther 2002;4:523–7.
  • Lopez JA, Bioley G, Turtle CJ et al. Single step enrichment ofblood dendritic cells by positive immunoselection. 7 Immunol Methods 2003;274:47–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.