722
Views
0
CrossRef citations to date
0
Altmetric
Review

Therapeutic strategies in FcγIIA receptor-dependent thrombosis and thromboinflammation as seen in heparin-induced thrombocytopenia (HIT) and vaccine-induced immune thrombocytopenia and thrombosis (VITT)

ORCID Icon, , &
Pages 281-294 | Received 18 Jan 2024, Accepted 05 Mar 2024, Published online: 12 Mar 2024

References

  • Sobota A, Strzelecka-Kiliszek A, Gładkowska E, et al. Binding of IgG-opsonized particles to Fc gamma R is an active stage of phagocytosis that involves receptor clustering and phosphorylation. J Immunol 2005;175(7):4450–4457. doi: 10.4049/jimmunol.175.7.4450
  • Daëron M Fc receptor biology. Annu Rev Immunol 1997;15:203–234 1. doi: 10.1146/annurev.immunol.15.1.203
  • Tridandapani S, Siefker K, Teillaud J-L, et al. Regulated expression and inhibitory function of fcgamma RIIb in human monocytic cells. J Biol Chem 2002;277(7):5082–5089. doi: 10.1074/jbc.M110277200
  • Mkaddem SB, Murua A, Flament H, et al. Lyn and fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nat Commun. 2017;8(1):246. doi: 10.1038/s41467-017-00294-0
  • Mkaddem SB, Benhamou M, Monteiro RC. Understanding fc receptor involvement in inflammatory diseases: from mechanisms to new therapeutic tools. Front Immunol. 2019;10:811. doi: 10.3389/fimmu.2019.00811
  • Walker TR, Watson SP Synergy between Ca2+ and protein kinase C is the major factor in determining the level of secretion from human platelets. Biochem J 1993;289 (Pt 1):277–282. doi: 10.1042/bj2890277
  • Qiao J, Al-Tamimi M, Baker RI, et al. The platelet Fc receptor, FcγRIIa. Immunol Rev. 2015;268(1):241–252. doi: 10.1111/imr.12370
  • Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–162. doi: 10.1016/j.blre.2014.10.003
  • van de Winkel JG, Capel PJ Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol Today 1993;14(5):215–221. doi: 10.1016/0167-5699(93)90166-I
  • Harrison PT, Davis W, Norman JC, et al. Binding of monomeric immunoglobulin G triggers Fc gamma RI-mediated endocytosis. J Biol Chem. 1994;269(39):24396–24402. doi: 10.1016/S0021-9258(19)51097-3
  • Hogarth PM. Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr Opin Immunol. 2002;14(6):798–802. doi: 10.1016/S0952-7915(02)00409-0
  • Pietersz GA, Mottram PL, van de Velde NC, et al. Inhibition of destructive autoimmune arthritis in FcgammaRIIa transgenic mice by small chemical entities. Immunol Cell Biol 2009;87(1):3–12. doi: 10.1038/icb.2008.82
  • Stefanski A-L, Nitschke E, Dörner T. Thromboinflammation: Dynamik physiologischer und pathologischer Wechselwirkungen von Entzündung und Koagulation. Aktuelle Rheumatologie. 2022;47(6):478–482. doi: 10.1055/a-1947-5200
  • Pai M. Epidemiology of VITT. Semin Hematol 2022;59(2):72–75. doi: 10.1053/j.seminhematol.2022.02.002
  • Warkentin TE. Vaccine-induced immune thrombotic thrombocytopenia (VITT). Semin Hematol. 2022;59(2):57–58. doi: 10.1053/j.seminhematol.2022.03.004
  • Arepally GM, Ortel TL. Clinical practice. Heparin-induced thrombocytopenia. N Engl J Med. 2006;355(8):809–817. doi: 10.1056/NEJMcp052967
  • Greinacher A. CLINICAL PRACTICE. Heparin-induced thrombocytopenia. N Engl J Med. 2015;373(3):252–261. doi: 10.1056/NEJMcp1411910
  • Greinacher A, Selleng K, Palankar R, et al. Insights in ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia. Blood. 2021;138(22):2256–2268. doi: 10.1182/blood.2021013231
  • Cuker A, Arepally GM, Chong BH, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: heparin-induced thrombocytopenia. Blood Adv. 2018;2(22):3360–3392. doi: 10.1182/bloodadvances.2018024489
  • Gruel Y, de ME, Pouplard C, et al. Diagnosis and management of heparin-induced thrombocytopenia. Anaesth Crit Care Pain Med. 2020;39(2):291–310. doi: 10.1016/j.accpm.2020.03.012
  • Pavord S, Hunt BJ, Horner D, et al. Vaccine induced immune thrombocytopenia and thrombosis: summary of NICE guidance. BMJ. 2021;375:n2195. doi: 10.1136/bmj.n2195
  • Carré J, Jourdi G, Gendron N, et al. Recent advances in anticoagulant treatment of immune thrombosis: a focus on direct oral anticoagulants in heparin-induced thrombocytopenia and anti-phospholipid syndrome. Int J Mol Sci. 2021;23(1):93. doi: 10.3390/ijms23010093
  • Warkentin TE, Lim W. Can heparin‐induced thrombocytopenia be associated with fondaparinux use? Reply to a rebuttal. J Thromb Haemost. 2008;6(7):1243–1246. doi: 10.1111/j.1538-7836.2008.02972.x
  • Greinacher A, Selleng K, Warkentin TE. Autoimmune heparin-induced thrombocytopenia. J Thromb Haemost. 2017;15(11):2099–2114. doi: 10.1111/jth.13813
  • Manji F, Warkentin TE, Sheppard J-A, et al. Fondaparinux cross-reactivity in heparin-induced thrombocytopenia successfully treated with high-dose intravenous immunoglobulin and rivaroxaban. Platelets 2019;31(1):124–127. doi: 10.1080/09537104.2019.1652263
  • WHO. Guidance for clinical case management of thrombosis with thrombocytopenia syndrome (TTS) following vaccination to prevent coronavirus disease (COVID-19). Geneva: World Health Organization; 2023. https://www.who.int/publications/i/item/9789240061989
  • Farner B, Eichler P, Kroll H, et al. A comparison of danaparoid and lepirudin in heparin-induced thrombocytopenia. Thromb Haemost 2001;85(6):950–957. doi: 10.1055/s-0037-1615946
  • Fathi M. Heparin-induced thrombocytopenia (HIT): identification and treatment pathways. Gcsp 2018;2018(2):15. doi: 10.21542/gcsp.2018.15
  • Nilius H, Kaufmann J, Cuker A, et al. Comparative effectiveness and safety of anticoagulants for the treatment of heparin-induced thrombocytopenia. American J Hematol 2021;96(7):805–815. doi: 10.1002/ajh.26194
  • Warkentin TE, Kelton JG. A 14-year study of heparin-induced thrombocytopenia. Am J Med. 1996;101(5):502–507. doi: 10.1016/S0002-9343(96)00258-6
  • Krauel K, Hackbarth C, Fürll B, et al. Heparin-induced thrombocytopenia: in vitro studies on the interaction of dabigatran, rivaroxaban, and low-sulfated heparin, with platelet factor 4 and anti-PF4/heparin antibodies. Blood. 2012;119(5):1248–1255. doi: 10.1182/blood-2011-05-353391
  • Warkentin TE, Pai M, Linkins L-A. Direct oral anticoagulants for treatment of HIT: update of Hamilton experience and literature review. Blood. 2017;130(9):1104–1113. doi: 10.1182/blood-2017-04-778993
  • Salih F, Schönborn L, Kohler S, et al. Vaccine-induced thrombocytopenia with severe headache. N Engl J Med. 2021;385(22):2103–2105. doi: 10.1056/NEJMc2112974
  • Oldenburg J, Klamroth R, Langer F, et al. Updated GTH statement on vaccination with the AstraZeneca COVID-19, 22.03.2021. [cited 2024 Mar 5]. Available from: https://gth-online.org/wp-content/uploads/2021/03/GTH_Stellungnahme_AstraZeneca_engl._3_22_2021.pdf
  • Toorop MMA, van Rein N, Nierman MC, et al. Inter- and intra-individual concentrations of direct oral anticoagulants: the KIDOAC study. J Thromb Haemost. 2022;20(1):92–103. doi: 10.1111/jth.15563
  • Kreimann M, Brandt S, Krauel K, et al. Binding of anti-platelet factor 4/heparin antibodies depends on the thermodynamics of conformational changes in platelet factor 4. Blood 2014;124(15):2442–2449. doi: 10.1182/blood-2014-03-559518
  • Nguyen T-H, Greinacher A, Delcea M. Quantitative description of thermodynamic and kinetic properties of the platelet factor 4/heparin bonds. Nanoscale. 2015;7(22):10130–10139. doi: 10.1039/C5NR02132D
  • Savi P, Chong BH, Greinacher A, et al. Effect of fondaparinux on platelet activation in the presence of heparin-dependent antibodies: a blinded comparative multicenter study with unfractionated heparin. Blood. 2005;105(1):139–144. doi: 10.1182/blood-2004-05-2010
  • Linkins L-A, Hu G, Warkentin TE. Systematic review of fondaparinux for heparin-induced thrombocytopenia: when there are no randomized controlled trials. Res Pract Thromb Haemost. 2018;2(4):678–683. doi: 10.1002/rth2.12145
  • Arnold DM. Heparin or nonheparin anticoagulants for VITT. Blood. 2022;139(23):3358–3359. doi: 10.1182/blood.2022016423
  • Bauersachs RM. Fondaparinux sodium: recent advances in the management of thrombosis. J Cardiovasc Pharmacol Ther. 2023;28:10742484221145010. doi: 10.1177/10742484221145010
  • Lewis BE, Wallis DE, Berkowitz SD, et al. Argatroban anticoagulant therapy in patients with heparin-induced thrombocytopenia. Circulation. 2001;103(14):1838–1843. doi: 10.1161/01.CIR.103.14.1838
  • Koster A, Buz S, Hetzer R, et al. Anticoagulation with argatroban in patients with heparin-induced thrombocytopenia antibodies after cardiovascular surgery with cardiopulmonary bypass: first results from the ARG-E03 trial. J Thorac Cardiovasc Surg. 2006;132(3):699–700. doi: 10.1016/j.jtcvs.2006.04.034
  • Graf T, Thiele T, Klingebiel R, et al. Immediate high-dose intravenous immunoglobulins followed by direct thrombin-inhibitor treatment is crucial for survival in sars-covid-19-adenoviral vector vaccine-induced immune thrombotic thrombocytopenia VITT with cerebral sinus venous and portal vein thrombosis. J Neurol. 2021;268(12):4483–4485. doi: 10.1007/s00415-021-10599-2
  • Di Nisio M, Middeldorp S, Büller HR. Direct thrombin inhibitors. N Engl J Med. 2005;353(10):1028–1040. doi: 10.1056/NEJMra044440
  • Warkentin TE, Greinacher A, Koster A. Bivalirudin. Thromb Haemost 2008;99(5):830–839. doi: 10.1160/TH07-10-0644
  • Gabarin N, Arnold DM, Nazy I, et al. Treatment of vaccine-induced immune thrombotic thrombocytopenia (VITT). Semin Hematol. 2022;59(2):89–96. doi: 10.1053/j.seminhematol.2022.03.002
  • Warkentin TE. Anticoagulant failure in coagulopathic patients: PTT confounding and other pitfalls. Expert Opin Drug Saf. 2014;13(1):25–43. doi: 10.1517/14740338.2013.823946
  • Srinivasan AF, Rice L, Bartholomew JR, et al. Warfarin-induced skin necrosis and venous limb gangrene in the setting of heparin-induced thrombocytopenia. Arch Internal Med. 2004;164(1):66–70. doi: 10.1001/archinte.164.1.66
  • Warkentin TE, Elavathil LJ, Hayward CP, et al. The pathogenesis of venous limb gangrene associated with heparin-induced thrombocytopenia. Ann internal med 1997;127(9):804–812. doi: 10.7326/0003-4819-127-9-199711010-00005
  • Huynh A, Kelton JG, Arnold DM, et al. Antibody epitopes in vaccine-induced immune thrombotic thrombocytopaenia. Nature. 2021;596(7873):565–569. doi: 10.1038/s41586-021-03744-4
  • Singh A, Toma F, Uzun G, et al. The interaction between anti-PF4 antibodies and anticoagulants in vaccine-induced thrombotic thrombocytopenia. Blood. 2022;139(23):3430–3438. doi: 10.1182/blood.2021013839
  • Schönborn L, Esteban O, Wesche J, et al. Heparin- and vaccine-independent anti-platelet factor 4 Immunothrombosis, 2023. Available at SSRN: https://ssrn.com/abstract=4519530
  • Garcia DA, Baglin TP, Weitz JI, et al. Parenteral anticoagulants: antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 2012;141(2 Suppl):e24–e43. doi: 10.1378/chest.11-2291
  • Harenberg J, Zimmermann R, Schwarz F, et al. Treatment of heparin-induced thrombocytopenia with thrombosis by new heparinoid. Lancet (London, England) 1983;1(8331):986–987. doi: 10.1016/S0140-6736(83)92107-4
  • Wilde MI, Markham AD A review of its pharmacology and clinical use in the management of heparin-induced thrombocytopenia. Drugs 1997;54(6):903–924. doi: 10.2165/00003495-199754060-00008
  • Chong BH, Magnani HN Orgaran in heparin-induced thrombocytopenia. Haemostasis 1992;22(2):85–91. doi: 10.1159/000216299
  • Keng TB, Chong BH. Heparin-induced thrombocytopenia and thrombosis syndrome: in vivo cross-reactivity with danaparoid and successful treatment with r-hirudin. Br J Haematol. 2001;114(2):394–396. doi: 10.1046/j.1365-2141.2001.02943.x
  • Magnani HN, Gallus A. Heparin-induced thrombocytopenia (HIT). A report of 1,478 clinical outcomes of patients treated with danaparoid (orgaran) from 1982 to mid-2004. Thromb Haemost 2006;95(6):967–981. doi: 10.1160/TH05-07-0489
  • Greinacher A, Alban S, Omer-Adam MA, et al. Heparin-induced thrombocytopenia: a stoichiometry-based model to explain the differing immunogenicities of unfractionated heparin, low-molecular-weight heparin, and fondaparinux in different clinical settings. Thromb Res. 2008;122(2):211–220. doi: 10.1016/j.thromres.2007.11.007
  • Krauel K, Fürll B, Warkentin TE, et al. Heparin-induced thrombocytopenia—therapeutic concentrations of danaparoid, unlike fondaparinux and direct thrombin inhibitors, inhibit formation of platelet factor 4-heparin complexes. J Thromb Haemost 2008;6(12):2160–2167. doi: 10.1111/j.1538-7836.2008.03171.x
  • Myllylahti L, Pitkänen H, Magnani H, et al. Experience of danaparoid to treat vaccine-induced immune thrombocytopenia and thrombosis, VITT. Thromb J. 2022;20(1):4. doi: 10.1186/s12959-021-00362-y
  • Kitchen S, Iampietro R, Woolley AM, et al. Anti xa monitoring during treatment with low molecular weight heparin or Danaparoid: inter-assay variability. Thromb Haemost 1999;82(10):1289–1293. doi: 10.1055/s-0037-1614377
  • Boissier E, Senage T, Babuty A, et al. Heparin anti-xa activity, a readily available unique test to quantify apixaban, rivaroxaban, fondaparinux, and danaparoid levels. Anesthesia & Analgesia. 2021;132(3):707–716. doi: 10.1213/ANE.0000000000005114
  • Rao NV, Argyle B, Xu X, et al. Low anticoagulant heparin targets multiple sites of inflammation, suppresses heparin-induced thrombocytopenia, and inhibits interaction of RAGE with its ligands. Am J Physiol Cell Physiol. 2010;299(1):C97–110. doi: 10.1152/ajpcell.00009.2010
  • Vayne C, Palankar R, Billy S, et al. The deglycosylated form of 1E12, a monoclonal anti-PF4 IgG, strongly inhibits antibody-triggered cellular activation in vaccine-induced thrombotic thrombocytopenia, and is a potential new treatment for Vιττ. Blood. 2021;138(Supplement 1):582. doi: 10.1182/blood-2021-147922
  • Kizlik-Masson C, Deveuve Q, Zhou Y, et al. Cleavage of anti-PF4/heparin IgG by a bacterial protease and potential benefit in heparin-induced thrombocytopenia. Blood. 2019;133(22):2427–2435. doi: 10.1182/blood.2019000437
  • Sarkar A, Khandelwal S, Koma GT, et al. Treatment of thrombocytopenia and thrombosis in HIT in mice using deglycosylated KKO: a novel therapeutic? Blood Adv. 2023;7(15):4112–4123. doi: 10.1182/bloodadvances.2023009661
  • Vayne C, Rollin J, Gruel Y, et al. PF4 immunoassays in vaccine-induced thrombotic thrombocytopenia. N Engl J Med. 2021;385(4):376–378. doi: 10.1056/NEJMc2106383
  • Johansson BP, Shannon O, Björck L, et al. IdeS: a bacterial proteolytic enzyme with therapeutic potential. PLoS One. 2008;3(2):e1692. doi: 10.1371/journal.pone.0001692
  • Jordan SC, Lorant T, Choi J, et al. IgG endopeptidase in highly sensitized patients undergoing transplantation. N Engl J Med. 2017;377(5):442–453. doi: 10.1056/NEJMoa1612567
  • Lonze BE, Tatapudi VS, Weldon EP, et al. IdeS (imlifidase): a novel agent that cleaves human IgG and permits successful kidney transplantation across high-strength donor-specific antibody. Ann Surg. 2018;268(3):488–496. doi: 10.1097/SLA.0000000000002924
  • Cho JH, Parilla M, Treml A, et al. Plasma exchange for heparin-induced thrombocytopenia in patients on extracorporeal circuits: a challenging case and a survey of the field. J of Clinical Apheresis 2019;34(1):64–72. doi: 10.1002/jca.21671
  • Moreno-Duarte I, Cooter M, Onwuemene OA, et al. Clinical outcomes of cardiac surgery patients undergoing therapeutic plasma exchange for heparin-induced thrombocytopenia. Vox Sang. 2021;116(2):217–224. doi: 10.1111/vox.13008
  • Major A, Carll T, Chan CW, et al. Refractory vaccine-induced immune thrombotic thrombocytopenia (VITT) managed with delayed therapeutic plasma exchange (TPE). J of Clinical Apheresis 2022;37(1):117–121. doi: 10.1002/jca.21945
  • Patriquin CJ, Laroche V, Selby R, et al. Therapeutic plasma exchange in vaccine-induced immune thrombotic thrombocytopenia. N Engl J Med. 2021;385(9):857–859. doi: 10.1056/NEJMc2109465
  • Pavord S, Scully M, Hunt BJ, et al. Clinical features of vaccine-induced immune thrombocytopenia and thrombosis. N Engl J Med. 2021;385(18):1680–1689. doi: 10.1056/NEJMoa2109908
  • Rock G, Weber V, Stegmayr B. Therapeutic plasma exchange (TPE) as a plausible rescue therapy in severe vaccine-induced immune thrombotic thrombocytopenia. Transfus Apheresis Sci. 2021;60(4):103174. doi: 10.1016/j.transci.2021.103174
  • Warkentin TE, Sheppard J-A, Chu FV, et al. Plasma exchange to remove HIT antibodies: dissociation between enzyme-immunoassay and platelet activation test reactivities. Blood 2015;125(1):195–198. doi: 10.1182/blood-2014-07-590844
  • Jones CG, Pechauer SM, Curtis BR, et al. Normal plasma IgG inhibits HIT antibody-mediated platelet activation: implications for therapeutic plasma exchange. Blood 2018;131(6):703–706. doi: 10.1182/blood-2017-08-803031
  • Nimmerjahn F, Ravetch JV Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 2008;26:513–533 1. doi: 10.1146/annurev.immunol.26.021607.090232
  • Imbach P, Barandun S, d’Apuzzo V, et al. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet (London, England) 1981;1(8232):1228–1231. doi: 10.1016/S0140-6736(81)92400-4
  • Frame JN, Mulvey KP, Phares JC, et al. Correction of severe heparin-associated thrombocytopenia with intravenous immunoglobulin. Ann internal med 1989;111(11):946–947. doi: 10.7326/0003-4819-111-11-946
  • Greinacher A, Liebenhoff U, Kiefel V, et al. Heparin-associated thrombocytopenia: the effects of various intravenous IgG preparations on antibody mediated platelet activation—a possible new indication for high dose i.V. Thromb Haemost 1994;71(5):641–645. doi: 10.1055/s-0038-1642496
  • Irani M, Siegal E, Jella A, et al. Use of intravenous immunoglobulin G to treat spontaneous heparin-induced thrombocytopenia. Transfusion 2018;59(3):931–934. doi: 10.1111/trf.15105
  • Padmanabhan A, Jones CG, Pechauer SM, et al. Ivig for treatment of severe refractory heparin-induced thrombocytopenia. Chest. 2017;152(3):478–485. doi: 10.1016/j.chest.2017.03.050
  • Warkentin TE. High-dose intravenous immunoglobulin for the treatment and prevention of heparin-induced thrombocytopenia: a review. Exp Rev Hematol. 2019;12(8):685–698. doi: 10.1080/17474086.2019.1636645
  • Mohanty E, Nazir S, Sheppard J-A, et al. High-dose intravenous immunoglobulin to treat spontaneous heparin-induced thrombocytopenia syndrome. J Thromb Haemost 2019;17(5):841–844. doi: 10.1111/jth.14411
  • Roopenian DC, Christianson GJ, Sproule TJ, et al. The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-fc-coupled drugs.J Immunol 2003;170(7):3528–3533. doi: 10.4049/jimmunol.170.7.3528
  • Hansen RJ, Balthasar JP Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor. Thromb Haemost 2002;88(6):898–899. doi: 10.1055/s-0037-1613331
  • Smith B, Christodoulou L, Clargo A, et al. Generation of two high affinity anti-mouse FcRn antibodies: inhibition of IgG recycling in wild type mice and effect in a mouse model of immune thrombocytopenia. Int Immunopharmacol. 2019;66:362–365. doi: 10.1016/j.intimp.2018.11.040
  • Pyzik M, Kozicky LK, Gandhi AK, et al. The therapeutic age of the neonatal Fc receptor. Nat Rev Immunol. 2023;23(7):415–432. doi: 10.1038/s41577-022-00821-1
  • Cines DB, Zaitsev S, Rauova L, et al. FcRn augments induction of tissue factor activity by IgG-containing immune complexes. Blood. 2020;135(23):2085–2093. doi: 10.1182/blood.2019001133
  • Monnet C, Jacque E, de RC, et al. The dual targeting of FcRn and FcγRs via monomeric Fc fragments results in strong inhibition of IgG-dependent autoimmune pathologies. Front Immunol. 2021;12:728322. doi: 10.3389/fimmu.2021.728322
  • Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol. 2015;55(1):489–511. doi: 10.1146/annurev-pharmtox-010611-134654
  • Zellweger F, Gasser P, Brigger D, et al. A novel bispecific DARPin targeting FcγRIIB and FcεRI-bound IgE inhibits allergic responses. Allergy. 2017;72(8):1174–1183. doi: 10.1111/all.13109
  • Riechert V, Hein S, Visser M, et al. FcγRIIA-specific DARPins as novel tools in blood cell analysis and platelet aggregation. J Biol Chem. 2023;299(6):104743. doi: 10.1016/j.jbc.2023.104743
  • Kiener PA, Rankin BM, Burkhardt AL, et al. Cross-linking of Fc gamma receptor I (Fc gamma RI) and receptor II (Fc gamma RII) on monocytic cells activates a signal transduction pathway common to both Fc receptors that involves the stimulation of p72 syk protein tyrosine kinase. J Biol Chem. 1993;268(32):24442–24448. doi: 10.1016/S0021-9258(20)80545-6
  • Lhermusier T, van Rottem J, Garcia C, et al. The Syk-kinase inhibitor R406 impairs platelet activation and monocyte tissue factor expression triggered by heparin-PF4 complex directed antibodies. J Thromb Haemost. 2011;9(10):2067–2076. doi: 10.1111/j.1538-7836.2011.04470.x
  • Reilly MP, Sinha U, André P, et al. PRT-060318, a novel syk inhibitor, prevents heparin-induced thrombocytopenia and thrombosis in a transgenic mouse model. Blood. 2011;117(7):2241–2246. doi: 10.1182/blood-2010-03-274969
  • Zlamal J, Singh A, Uzun G, et al. PB1344 impact of spleen tyrosine kinase inhibition on vaccine-induced thrombotic thrombocytopenia antibody-induced procoagulant platelet and thrombus formation. Res Pract Thromb Haemost. 2023;7:101444. doi: 10.1016/j.rpth.2023.101444
  • Connell NT, Berliner N. Fostamatinib for the treatment of chronic immune thrombocytopenia. Blood. 2019;133(19):2027–2030. doi: 10.1182/blood-2018-11-852491
  • Duan R, Goldmann L, Li Y, et al. Spontaneous platelet aggregation in blood is mediated by FcγRIIA stimulation of Bruton’s tyrosine kinase. Int J Mol Sci. 2021;23(1):76. doi: 10.3390/ijms23010076
  • von Hundelshausen P, Lorenz R, Siess W, et al. Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT): targeting pathomechanisms with Bruton Tyrosine Kinase Inhibitors. Thromb Haemost 2021;121(11):1395–1399. doi: 10.1055/a-1481-3039
  • Goldmann L, Duan R, Kragh T, et al. Oral Bruton tyrosine kinase inhibitors block activation of the platelet Fc receptor CD32a (FcγRIIA): a new option in HIT? Blood Adv. 2019;3(23):4021–4033. doi: 10.1182/bloodadvances.2019000617
  • Rigg RA, Aslan JE, Healy LD, et al. Oral administration of Bruton’s tyrosine kinase inhibitors impairs GPVI-mediated platelet function. Am J Physiol Cell Physiol. 2016;310(5):C373–80. doi: 10.1152/ajpcell.00325.2015
  • Smith CW, Harbi MH, Garcia-Quintanilla L, et al. The Btk inhibitor AB-95-LH34 potently inhibits atherosclerotic plaque-induced thrombus formation and platelet procoagulant activity. J Thromb Haemost 2022;20(12):2939–2952. doi: 10.1111/jth.15899
  • Weber C, von Hundelshausen P, Siess W VITT after ChAdOx1 nCoV-19 vaccination. N Engl J Med 2021;385(23):2202–2205. doi: 10.1056/NEJMc2111026
  • Meng D, Luo M, Liu B. The role of CLEC-2 and its ligands in thromboinflammation. Front Immunol. 2021;12:688643. doi: 10.3389/fimmu.2021.688643
  • Nicolson PLR, Nock SH, Hinds J, et al. Low-dose btk inhibitors selectively block platelet activation by CLEC-2. Haematologica 2021;106(1):208–219. doi: 10.3324/haematol.2019.218545
  • Zheng TJ, Lofurno ER, Melrose AR, et al. Assessment of the effects of syk and BTK inhibitors on GPVI-mediated platelet signaling and function. Am J Physiol Cell Physiol. 2021;320(5):C902–C915. doi: 10.1152/ajpcell.00296.2020
  • Lindhoff-Last E, Schönborn L, Zaninetti C, et al. Rescue therapy in chronic prothrombotic autoimmune anti-PF4 disorder. N Engl J Med. 2023;389(14):1339–1341. doi: 10.1056/NEJMc2309016
  • Hemme E, Biskop D, Depuydt MAC, et al. Bruton’s tyrosine kinase inhibition by acalabrutinib does not affect early or advanced atherosclerotic plaque size and morphology in ldlr-/- mice. Vascul Pharmacol. 2023;150:107172. doi: 10.1016/j.vph.2023.107172
  • Smith CW, Montague SJ, Kardeby C, et al. Antiplatelet drugs block platelet activation by VITT patient serum. Blood. 2021;138(25):2733–2740. doi: 10.1182/blood.2021012277
  • Nyby MD, Sasaki M, Ideguchi Y, et al. Platelet lipoxygenase inhibitors attenuate thrombin- and thromboxane mimetic-induced intracellular calcium mobilization and platelet aggregation. J Pharmacol Exp Ther. 1996;278(2):503–509.
  • Yeung J, Tourdot BE, Fernandez-Perez P, et al. Platelet 12-LOX is essential for FcγRIIa-mediated platelet activation. Blood. 2014;124(14):2271–2279. doi: 10.1182/blood-2014-05-575878
  • Adili R, Tourdot BE, Mast K, et al. First selective 12-LOX inhibitor, ML355, impairs thrombus formation and vessel occlusion in vivo with minimal effects on hemostasis. Arteriosclerosis Thrombosis Vasc Biol. 2017;37(10):1828–1839. doi: 10.1161/ATVBAHA.117.309868
  • Renna SA, Zhao X, Kunapuli SP, et al. Novel strategy to combat the procoagulant phenotype in heparin-induced thrombocytopenia using 12-LOX inhibition. ATVB. 2023;43(10):1808–1817. doi: 10.1161/ATVBAHA.123.319434
  • Sharifi-Rad J, Sharopov F, Ezzat SM, et al. An updated review on glycoprotein IIb/IIIa inhibitors as antiplatelet agents: basic and clinical perspectives. High Blood Press Cardiovasc Prev. 2023;30(2):93–107. doi: 10.1007/s40292-023-00562-9
  • Jeske WP, Walenga JM, Szatkowski E, et al. Effect of glycoprotein IIb/IIIa antagonists on the HIT serum induced activation of platelets. Thromb Res. 1997;88(3):271–281. doi: 10.1016/S0049-3848(97)00254-5
  • Koster A, Kukucka M, Bach F, et al. Anticoagulation during cardiopulmonary bypass in patients with heparin-induced thrombocytopenia type II and renal impairment using heparin and the platelet glycoprotein IIb-IIIa antagonist tirofiban. Anesthesiology 2001;94(2):245–251. doi: 10.1097/00000542-200102000-00013
  • Pitkänen HH, Jouppila A, Helin T, et al. COVID-19 adenovirus vaccine triggers antibodies against PF4 complexes to activate complement and platelets. Thromb Res. 2021;208:129–137. doi: 10.1016/j.thromres.2021.10.027
  • Polgár J, Eichler P, Greinacher A, et al. Adenosine Diphosphate (ADP) and ADP receptor play a major role in platelet activation/aggregation induced by sera from heparin-induced thrombocytopenia patients. Blood 1998;91(2):549–554. doi: 10.1182/blood.V91.2.549
  • Aster RH, Curtis BR, Bougie DW, et al. Thrombocytopenia associated with the use of GPIIb/IIIa inhibitors: position paper of the ISTH working group on thrombocytopenia and GPIIb/IIIa inhibitors. J Thromb Haemost. 2006;4(3):678–679. doi: 10.1111/j.1538-7836.2006.01829.x
  • Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 2021;18(9):666–682. doi: 10.1038/s41569-021-00552-1
  • Stoll G, Nieswandt B Thrombo-inflammation in acute ischaemic stroke - implications for treatment. Nat Rev Neurol 2019;15(8):473–481. doi: 10.1038/s41582-019-0221-1