109
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacotherapeutic advances for chronic myelogenous leukemia: beyond tyrosine kinase inhibitors

, , , , , & show all
Pages 189-202 | Received 07 Feb 2024, Accepted 13 Mar 2024, Published online: 19 Mar 2024

References

  • Bower H, Björkholm M, Dickman PW, et al. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the General population. JCO. 2016;34(24):2851–2857. doi: 10.1200/JCO.2015.66.2866
  • Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–984. doi: 10.1038/s41375-020-0776-2
  • Breccia M, Olimpieri PP, Olimpieri O, et al. How many chronic myeloid leukemia patients who started a frontline second‐generation tyrosine kinase inhibitor have to switch to a second‐line treatment? A retrospective analysis from the monitoring registries of the Italian medicines agency (AIFA). Cancer Med. 2020;9(12):4160–4165. doi: 10.1002/cam4.3071
  • Kantarjian HM, Giles FJ, Bhalla KN, et al. Nilotinib is effective in patients with chronic myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month follow-up results. Blood. 2011;117(4):1141–1145. doi: 10.1182/blood-2010-03-277152
  • Shah NP, Guilhot F, Cortes JE, et al. Long-term outcome with dasatinib after imatinib failure in chronic-phase chronic myeloid leukemia: follow-up of a phase 3 study. Blood. 2014;123(15):2317–2324. doi: 10.1182/blood-2013-10-532341
  • Cortes JE, Kim D-W, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome–positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132(4):393–404. doi: 10.1182/blood-2016-09-739086
  • Cortes J, Apperley J, Lomaia E, et al. Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: a randomized, open-label phase 2 clinical trial. Blood. 2021;138(21):2042–2050. doi: 10.1182/blood.2021012082
  • Hochhaus A, Réa D, Boquimpani C, et al. Asciminib vs bosutinib in chronic-phase chronic myeloid leukemia previously treated with at least two tyrosine kinase inhibitors: longer-term follow-up of ASCEMBL. Leukemia. 2023;37(3):617–626. doi: 10.1038/s41375-023-01829-9
  • Jiang Q, Li Z, Qin Y-Z, et al. A five-year follow-up on safety and efficacy of olverembatinib (HQP1351), a novel third-generation BCR-ABL tyrosine kinase inhibitor (TKI), in patients with TKI-Resistant chronic myeloid leukemia (CML) in China. Blood. 2022;140(Supplement 1):198–199. doi: 10.1182/blood-2022-170868
  • Jiang Q, Li Z, Hou Y, et al. Updated results of pivotal phase 2 trials of olverembatinib (HQP1351) in patients (pts) with tyrosine kinase inhibitor (TKI)-resistant chronic- and accelerated-phase chronic myeloid leukemia (CML-CP and CML-AP) with T315I mutation. Blood. 2022;140(Supplement 1):203–204. doi: 10.1182/blood-2022-170698
  • Jabbour E, Kantarjian HM. Update of olverembatinib (HQP1351) overcoming ponatinib and/or asciminib resistance in patients (pts) with heavily Pretreated/Refractory chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). In: Abstracts of the 65th American Society of Hematology Annual Meeting & Exposition. San Diego; 2024 Dec. p. 7–10.
  • Cortes JE, Saikia T, Kim D-W, et al. Phase 1 trial of Vodobatinib, a novel oral BCR-ABL1 tyrosine kinase inhibitor (TKI): activity in CML chronic phase patients failing TKI therapies including ponatinib. Blood. 2020;136(Supplement 1):51–52. doi: 10.1182/blood-2020-139847
  • Cortes JE, Saikia T, Kim D-W, et al. Efficacy and safety of vodobatinib in patients (pts) with chronic phase Philadelphia positive chronic myeloid leukemia (Ph+ CML): a Sub group analysis by lines of tyrosine kinase inhibitor (TKI) therapy. Blood. 2022;140(Supplement 1):205–207. doi: 10.1182/blood-2022-166452
  • Zhang L, Meng L, Liu B, et al. Flumatinib versus imatinib for newly diagnosed chronic phase chronic myeloid leukemia: a phase III, randomized, open-label, multi-center FESTnd study. Clin Cancer Res. 2021;27(1):70–77. doi: 10.1158/1078-0432.CCR-20-1600
  • Zhou X, Xu N, Wen Z, et al. Flumatinib for the treatment of adult patients with resistant or intolerant chronic-phase chronic myeloid leukemia: results from real-world data. Blood. 2023;142(Supplement 1):6379. doi: 10.1182/blood-2023-184643
  • Turkina AG, Vinogradova O, Lomaia E, et al. PF-114 in patients failing prior tyrosine kinase-inhibitor therapy including BCR: ABL1 T315I. Blood. 2021;138(Supplement 1):1482. doi: 10.1182/blood-2021-150120
  • Hamilton A, Helgason GV, Schemionek M, et al. Chronic myeloid leukemia stem cells are not dependent on bcr-abl kinase activity for their survival. Blood. 2012;119(6):1501–1510. doi: 10.1182/blood-2010-12-326843
  • Houshmand M, Simonetti G, Circosta P, et al. Chronic myeloid leukemia stem cells. Leukemia. 2019;33(7):1543–1556. doi: 10.1038/s41375-019-0490-0
  • Eisterer W, Jiang X, Christ O, et al. Different subsets of primary chronic myeloid leukemia stem cells engraft immunodeficient mice and produce a model of the human disease. Leukemia. 2005;19(3):435–441. doi: 10.1038/sj.leu.2403649
  • Herrmann H, Sadovnik I, Cerny-Reiterer S, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood. 2014;123(25):3951–3962. doi: 10.1182/blood-2013-10-536078
  • Bocchia M, Sicuranza A, Abruzzese E, et al. Residual Peripheral Blood CD26+ Leukemic Stem Cells in Chronic Myeloid Leukemia Patients During TKI Therapy and During Treatment-Free Remission. Front Oncol. 2018;8:194. doi: 10.3389/fonc.2018.00194
  • Järås M, Johnels P, Hansen N, et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci, USA. 2010;107(37):16280–16285. doi: 10.1073/pnas.1004408107
  • Gallipoli P, Cook A, Rhodes S, et al. JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood. 2014;124(9):1492–1501. doi: 10.1182/blood-2013-12-545640
  • Singh P, Kumar V, Gupta SK, et al. Combating TKI resistance in CML by inhibiting the PI3K/Akt/mTOR pathway in combination with TKIs: a review. Med Oncol. 2021;38(1):10. doi: 10.1007/s12032-021-01462-5
  • Ahmed W, Van Etten RA. Signal Transduction in the chronic leukemias: implications for targeted therapies. Curr Hematol Malig Rep. 2013;8(1):71–80. doi: 10.1007/s11899-012-0150-1
  • Zhao C, Blum J, Chen A, et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell. 2007;12(6):528–541. doi: 10.1016/j.ccr.2007.11.003
  • Kuo Y-H, Qi J, Cook GJ. Regain control of p53: targeting leukemia stem cells by isoform-specific HDAC inhibition. Exp Hematol. 2016;44(5):315–321. doi: 10.1016/j.exphem.2016.02.007
  • Goff DJ, Recart AC, Sadarangani A, et al. A pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell. 2013;12(3):316–328. doi: 10.1016/j.stem.2012.12.011
  • Valent P. Targeting the JAK2-STAT5 pathway in CML. Blood. 2014;124(9):1386–1388. doi: 10.1182/blood-2014-07-585943
  • Ren S, Xue F, Feng J, et al. Intrinsic regulation of the interactions between the SH3 domain of p85 subunit of phosphatidylinositol-3 kinase and the protein network of BCR/ABL oncogenic tyrosine kinase. Exp Hematol. 2005;33(10):1222–1228. doi: 10.1016/j.exphem.2005.06.030
  • Hochhaus A, Kreil S, Corbin AS, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia. 2002;16(11):2190–2196. doi: 10.1038/sj.leu.2402741
  • Naka K, Hoshii T, Muraguchi T, et al. TGF-β–FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature. 2010;463(7281):676–680. doi: 10.1038/nature08734
  • Gregory MA, Phang TL, Neviani P, et al. Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of bcr-abl. Cancer Cell. 2010;18(1):74–87. doi: 10.1016/j.ccr.2010.04.025
  • Schepers K, Campbell TB, Passegué E. Normal and leukemic stem Cell niches: insights and therapeutic opportunities. Cell Stem Cell. 2015;16(3):254–267. doi: 10.1016/j.stem.2015.02.014
  • Zhang B, Ho YW, Huang Q, et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell. 2012;21(4):577–592. doi: 10.1016/j.ccr.2012.02.018
  • Shah M, Bhatia R. Preservation of quiescent chronic myelogenous leukemia stem cells by the bone marrow microenvironment. Adv Exp Med Biol. 2018:1100:97–110.
  • Zhang H, Li H, Xi HS, et al. HIF1α is required for survival maintenance of chronic myeloid leukemia stem cells. Blood. 2012;119(11):2595–607. doi: 10.1182/blood-2011-10-387381
  • Chen H, Shen Y, Gong F, et al. HIF-α promotes chronic myelogenous leukemia Cell proliferation by upregulating p21 expression. Cell Biochem Biophys. 2015;72(1):179–83. doi: 10.1007/s12013-014-0434-2
  • Saito S, Lin YC, Tsai MH, et al. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells. Kaohsiung J Med Sci. 2015;31(6):279–86. doi: 10.1016/j.kjms.2015.03.002
  • Kuntz EM, Baquero P, Michie AM, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23(10):1234–1240. doi: 10.1038/nm.4399
  • Qiu S, Sheth V, Yan C, et al. Metabolic adaptation to tyrosine kinase inhibition in leukemia stem cells. Blood. 2023;142(6):574–588. doi: 10.1182/blood.2022018196
  • Kim J-A, Shim J-S, Lee G-Y, et al. Microenvironmental remodeling as a parameter and prognostic factor of heterogeneous leukemogenesis in acute myelogenous leukemia. Cancer Res. 2015;75(11):2222–2231. doi: 10.1158/0008-5472.CAN-14-3379
  • Jin L, Tabe Y, Konoplev S, et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther. 2008;7(1):48–58. doi: 10.1158/1535-7163.MCT-07-0042
  • Kuepper MK, Bütow M, Herrmann O, et al. Stem cell persistence in CML is mediated by extrinsically activated JAK1-STAT3 signaling. Leukemia. 2019;33(8):1964–1977. doi: 10.1038/s41375-019-0427-7
  • Zhang X, Tu H, Yang Y, et al. Bone marrow–derived mesenchymal stromal cells promote resistance to tyrosine kinase inhibitors in chronic myeloid leukemia via the IL-7/JAK1/STAT5 pathway. J Biol Chem. 2019;294(32):12167–12179. doi: 10.1074/jbc.RA119.008037
  • Gallipoli P, Pellicano F, Morrison H, et al. Autocrine TNF-α production supports CML stem and progenitor cell survival and enhances their proliferation. Blood. 2013;122(19):3335–3339. doi: 10.1182/blood-2013-02-485607
  • Zöller M. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells. Front Immunol. 2015;6:235. doi: 10.3389/fimmu.2015.00235
  • Godavarthy PS, Kumar R, Herkt SC, et al. The vascular bone marrow niche influences outcome in chronic myeloid leukemia via the E-selectin - SCL/TAL1 - CD44 axis. Haematologica. 2020;105(1):136–147. doi: 10.3324/haematol.2018.212365
  • Arai F, Suda T. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann N Y Acad Sci. 2007;1106(1):41–53. doi: 10.1196/annals.1392.005
  • Visnjic D, Kalajzic Z, Rowe DW, et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 2004;103(9):3258–3264. doi: 10.1182/blood-2003-11-4011
  • Bowers M, Zhang B, Ho Y, et al. Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. Blood. 2015;125(17):2678–2688. doi: 10.1182/blood-2014-06-582924
  • Reuben JM, Lee B-N, Johnson H, et al. Restoration of Th1 cytokine synthesis by T cells of patients with chronic myelogenous leukemia in cytogenetic and hematologic remission with interferon-alpha. Clin Cancer Res. 2000;6:1671–1677. 5
  • Seguro FS, Maciel FV, Lopes GO, et al. Lymphocyte subpopulations and expression of immune checkpoint receptors PD-1 and tim-3 in patients with chronic myeloid leukemia in a discontinuation trial. Blood. 2019;134(Supplement_1):1651. doi: 10.1182/blood-2019-125989
  • Mumprecht S, Schürch C, Schwaller J, et al. Programmed death 1 signaling on chronic myeloid leukemia–specific T cells results in T-cell exhaustion and disease progression. Blood. 2009;114(8):1528–1536. doi: 10.1182/blood-2008-09-179697
  • Brück O, Blom S, Dufva O, et al. Immune cell contexture in the bone marrow tumor microenvironment impacts therapy response in CML. Leukemia. 2018;32(7):1643–1656. doi: 10.1038/s41375-018-0175-0
  • Wang W-Z, Pu Q-H, Lin X-H, et al. Silencing of miR-21 sensitizes CML CD34+ stem/progenitor cells to imatinib-induced apoptosis by blocking PI3K/AKT pathway. Leuk Res. 2015;39(10):1117–1124. doi: 10.1016/j.leukres.2015.07.008
  • Salati S, Salvestrini V, Carretta C, et al. Deregulated expression of miR-29a-3p, miR-494-3p and miR-660-5p affects sensitivity to tyrosine kinase inhibitors in CML leukemic stem cells. Oncotarget. 2017;8(30):49451–49469. doi: 10.18632/oncotarget.17706
  • Ma J, Wu D, Yi J, et al. MiR-378 promoted cell proliferation and inhibited apoptosis by enhanced stem cell properties in chronic myeloid leukemia K562 cells. Biomed Pharmacother. 2019;112:108623. doi: 10.1016/j.biopha.2019.108623
  • Zhang Y, Zhou S, Yan H, et al. miR-203 inhibits proliferation and self-renewal of leukemia stem cells by targeting survivin and bmi-1. Sci Rep. 2016;6(1):19995. doi: 10.1038/srep19995
  • Zhang X, Ma W, Xue W, et al. miR-181a plays the tumor-suppressor role in chronic myeloid leukemia CD34 + cells partially via SERPINE1. Cell Mol Life Sci. 2023;81:10. doi: 10.1007/s00018-023-05036-8
  • Zhang B, Zhao D, Chen F, et al. Acquired miR-142 deficit in leukemic stem cells suffices to drive chronic myeloid leukemia into blast crisis. Nat Commun. 2023;14(1):5325. doi: 10.1038/s41467-023-41167-z
  • Zipeto MA, Court AC, Sadarangani A, et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing let-7 biogenesis. Cell Stem Cell. 2016;19(2):177–191. doi: 10.1016/j.stem.2016.05.004
  • Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol. 2009;10(10):697–708. doi: 10.1038/nrm2763
  • Rinke J, Chase A, Cross NCP, et al. EZH2 in Myeloid Malignancies. Cells. 2020;9(7):1639. doi: 10.3390/cells9071639
  • Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423(6937):255–260. doi: 10.1038/nature01572
  • Saudy NS, Fawzy IM, Azmy E, et al. BMI1 gene expression in myeloid leukemias and its impact on prognosis. Blood Cells Mol Dis. 2014;53(4):194–198. doi: 10.1016/j.bcmd.2014.07.002
  • Crea F, Di Paolo A, Liu HH, et al. Polycomb genes are associated with response to imatinib in chronic myeloid leukemia. Epigenomics. 2015;7(5):757–765. doi: 10.2217/epi.15.35
  • Bhattacharyya J, Mihara K, Yasunaga S, et al. BMI-1 expression is enhanced through transcriptional and posttranscriptional regulation during the progression of chronic myeloid leukemia. Ann Hematol. 2009;88(4):333–340. doi: 10.1007/s00277-008-0603-8
  • Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol Cancer. 2020;19(1):5. doi: 10.1186/s12943-019-1127-7
  • Abraham A, Qiu S, Chacko BK, et al. SIRT1 regulates metabolism and leukemogenic potential in CML stem cells. J Clin Invest. 2019;129(7):2685–2701. doi: 10.1172/JCI127080
  • Li L, Wang L, Li L, et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell. 2012;21(2):266–281. doi: 10.1016/j.ccr.2011.12.020
  • Yuan H, Wang Z, Li L, et al. Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood. 2012;119(8):1904–1914. doi: 10.1182/blood-2011-06-361691
  • Pan S, Leng J, Deng X, et al. Nicotinamide increases the sensitivity of chronic myeloid leukemia cells to doxorubicin via the inhibition of SIRT1. J Cell Biochem. 2020;121(1):574–586. doi: 10.1002/jcb.29303
  • Sweet K, Hazlehurst L, Sahakian E, et al. A phase I clinical trial of ruxolitinib in combination with nilotinib in chronic myeloid leukemia patients with molecular evidence of disease. Leuk Res. 2018;74:89–96. doi: 10.1016/j.leukres.2018.10.002
  • Guerra VA, Kantarjian HM, Borthakur GM, et al. A phase I-II study of ruxolitinib (INCB18424) for patients with chronic myeloid leukemia with minimal residual disease while on therapy with imatinib. Blood. 2019;134(Supplement_1):5906. doi: 10.1182/blood-2019-127272
  • Sweet K, Atallah EL, Radich JP, et al. Second treatment free remission after combination therapy with ruxolitinib plus tyrosine kinase inhibitors in chronic phase chronic myeloid leukemia (CML). Blood. 2021;138(Supplement 1):2555. doi: 10.1182/blood-2021-147954
  • Prost S, Relouzat F, Spentchian M, et al. Erosion of the chronic myeloid leukaemia stem cell pool by PPARγ agonists. Nature. 2015;525(7569):380–383. doi: 10.1038/nature15248
  • Rousselot P, Prost S, Guilhot J, et al. Pioglitazone together with imatinib in chronic myeloid leukemia: a proof of concept study. Cancer. 2017;123(10):1791–1799. doi: 10.1002/cncr.30490
  • Pagnano KBB, Lopes ABP, Miranda EC, et al. Efficacy and safety of pioglitazone in a phase 1/2 imatinib discontinuation trial (EDI-PIO) in chronic myeloid leukemia with deep molecular response. Am J Hematol. 2020;95(12):E321–E323. doi: 10.1002/ajh.25986
  • Pagnano KB, Lopes ABP, ECMCM M, et al. Five-year follow-up of the phase I/II discontinuation trial of imatinib after pioglitazone (EDI-PIO) in chronic myeloid leukemia patients in deep molecular response. Blood. 2022;140(Supplement 1):9645–9646. doi: 10.1182/blood-2022-164598
  • Ko TK, Chuah CTH, Huang JWJ, et al. The BCL2 inhibitor ABT-199 significantly enhances imatinib-induced cell death in chronic myeloid leukemia progenitors. Oncotarget. 2014;5(19):9033–9038. doi: 10.18632/oncotarget.1925
  • Carter BZ, Mak PY, Mu H, et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med. 2016;8(355):355ra117. doi: 10.1126/scitranslmed.aag1180
  • Haddad F. Phase 2 study of Dasatinib with and without venetoclax in patients with early chronic phase chronic myeloid leukemia (ECP-CML). In: Abstracts of the 65th American Society of Hematology Annual Meeting & Exposition. San Diego; 2024 Dec. p. 7–10.
  • Hsieh Y-C, Kirschner K, Copland M. Improving outcomes in chronic myeloid leukemia through harnessing the immunological landscape. Leukemia. 2021;35(5):1229–1242. doi: 10.1038/s41375-021-01238-w
  • Roy L, Chomel J-C, Guilhot J, et al. Dasatinib plus Peg-Interferon alpha 2b combination in newly diagnosed chronic phase chronic myeloid leukaemia: results of a multicenter phase 2 study (DASA-PegIFN study). Br J Haematol. 2023;200(2):175–186. doi: 10.1111/bjh.18486
  • Nicolini FE, Etienne G, Huguet F, et al. Treatment-Free Remissions in newly diagnosed CP CML patients treated with the combination of nilotinib + pegylated interferon alpha 2a versus nilotinib alone in the national phase III petals trial. Blood. 2021;138(Supplement 1):2553. doi: 10.1182/blood-2021-146412
  • Hochhaus A, Burchert A, Saussele S, et al. Treatment free remission after nilotinib plus peg-interferon alpha induction and peg-interferon alpha maintenance therapy for newly diagnosed chronic myeloid leukemia patients; the tiger trial. Blood. 2023;142(Supplement 1):446. doi: 10.1182/blood-2023-182792
  • Burchert A, Saussele S, Michel C, et al. Efficacy of Ropeginterferon Alpha 2b in inducing treatment free remission in chronic myeloid leukemia - an international, randomized phase III trial (ENDURE, CML-IX) of the German CML-Study group. Blood. 2022;140(Supplement 1):1501–1503. doi: 10.1182/blood-2022-169324
  • Zeidan AM, Roopcharan K, Radich JP, et al. Minimal toxicity seen when pembrolizumab is added to tyrosine kinase inhibitors in patients with chronic myeloid leukemia and persistently detectable minimal residual disease: early results from an ongoing phase II trial (ECOG-ACRIN EA9171). Blood. 2021;138(Supplement 1):3613. doi: 10.1182/blood-2021-145015
  • Martínez-López J, Mustjoki S, Porkka K, et al. The safety and efficacy of dasatinib plus nivolumab in patients with previously treated chronic myeloid leukemia: results from a phase 1b dose-escalation study. Leuk Lymphoma. 2021;62(8):2040–2043. doi: 10.1080/10428194.2021.1889536
  • Yahata T, Ibrahim AA, Hirano K, et al. Targeting of plasminogen activator inhibitor-1 activity promotes elimination of chronic myeloid leukemia stem cells. Haematologica. 2021;106(2):483–494. doi: 10.3324/haematol.2019.230227
  • Takahashi N, Kameoka Y, Onizuka M, et al. Deep molecular response in patients with chronic phase chronic myeloid leukemia treated with the plasminogen activator inhibitor-1 inhibitor TM5614 combined with a tyrosine kinase inhibitor. Cancer Medi. 2023;12(4):4250–4258. doi: 10.1002/cam4.5292
  • Warda W, Larosa F, Neto Da Rocha M, et al. CML hematopoietic stem cells expressing IL1RAP can Be targeted by chimeric antigen receptor–engineered T cells. Cancer Res. 2019;79(3):663–675. doi: 10.1158/0008-5472.CAN-18-1078
  • Eldesouki RE, Wu C, Saleh FM, et al. Identification and targeting of Thomsen–friedenreich and IL1RAP antigens on chronic myeloid leukemia stem cells using Bi-specific antibodies. Onco Targets Ther. 2021;14:609–621. doi: 10.2147/OTT.S255299
  • Zhou S, Li W, Xiao Y, et al. A novel chimeric antigen receptor redirecting T-cell specificity towards CD26+ cancer cells. Leukemia. 2021;35(1):119–129. doi: 10.1038/s41375-020-0824-y
  • Houshmand M, Garello F, Stefania R, et al. Targeting chronic myeloid leukemia stem/progenitor cells using venetoclax-loaded immunoliposome. Cancers (Basel). 2021;13(6):1311. doi: 10.3390/cancers13061311
  • Willmann M, Sadovnik I, Eisenwort G, et al. Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph+ chronic myeloid leukemia. Exp Hematol. 2018;57:50–59.e6.
  • Weisberg E, Azab AK, Manley PW, et al. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia. 2012;26(5):985–990. doi: 10.1038/leu.2011.360
  • Weisberg EL, Sattler M, Azab AK, et al. Inhibition of SDF-1-induced migration of oncogene-driven myeloid leukemia by the L-RNA aptamer (spiegelmer), NOX-A12, and potentiation of tyrosine kinase inhibition. Oncotarget. 2017;8(66):109973–109984. doi: 10.18632/oncotarget.22409
  • Zhang B, Chu S, Agarwal P, et al. Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor–treated CML stem cells. Blood. 2016;128(23):2671–2682. doi: 10.1182/blood-2015-11-679928
  • Herrmann O, Kuepper MK, Bütow M, et al. Infliximab therapy together with tyrosine kinase inhibition targets leukemic stem cells in chronic myeloid leukemia. BMC Cancer. 2019;19(1):658. doi: 10.1186/s12885-019-5871-2
  • Bütow M, Testaquadra FJ, Baumeister J, et al. Targeting cytokine-induced leukemic stem cell persistence in chronic myeloid leukemia by IKK2-inhibition. Haematologica. 2023;108:1179–1185. 4 10.3324/haematol.2022.280922
  • Peterson LF, Mitrikeska E, Giannola D, et al. p53 stabilization induces apoptosis in chronic myeloid leukemia blast crisis cells. Leukemia. 2011;25(5):761–769. doi: 10.1038/leu.2011.7
  • Carter BZ, Mak PY, Mu H, et al. Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model. Haematologica. 2020;105(5):1274–1284. doi: 10.3324/haematol.2019.219261
  • Carter BZ, Mak PY, Mak DH, et al. Synergistic effects of p53 activation via MDM2 inhibition in combination with inhibition of bcl-2 or bcr-abl in CD34 + proliferating and quiescent chronic myeloid leukemia blast crisis cells. Oncotarget. 2015;6(31):30487–30499. doi: 10.18632/oncotarget.5890
  • Sanaei M, Kavoosi F. Histone deacetylases and histone deacetylase inhibitors: molecular mechanisms of action in various cancers. Adv Biomed Res. 2019;8(1):63. doi: 10.4103/abr.abr_142_19
  • Okabe S, Tauchi T, Kimura S, et al. Combining the ABL1 kinase inhibitor ponatinib and the histone deacetylase inhibitor vorinostat: a potential treatment for BCR-ABL-Positive leukemia. PLoS One. 2014;9(2):e89080. doi: 10.1371/journal.pone.0089080
  • Fiskus W, Pranpat M, Balasis M, et al. Cotreatment with Vorinostat (suberoylanilide hydroxamic acid) enhances activity of dasatinib (BMS-354825) against imatinib mesylate–sensitive or imatinib mesylate–resistant chronic myelogenous leukemia cells. Clin Cancer Res. 2006;12(19):5869–5878. doi: 10.1158/1078-0432.CCR-06-0980
  • Abduelkarem AR, Anbar HS, Zaraei S-O, et al. Diarylamides in anticancer drug discovery: a review of pre-clinical and clinical investigations. Eur J Med Chem. 2020;15:188:112029. 10.1016/j.ejmech.2019.112029
  • Qiu Q, Yang L, Feng Y, et al. HDAC I/IIb selective inhibitor purinostat mesylate combined with GLS1 inhibition effectively eliminates CML stem cells. Bioact Mater. 2023;21:483–498. doi: 10.1016/j.bioactmat.2022.08.006
  • Zaritskey A, Alimena G, Konopka L, et al. A phase II study of oral panobinostat (LBH589) for chronic phase chronic myeloid leukemia (CML) with resistance to ≥2 BCR-ABL tyrosine kinase inhibitors. Blood. 2008;112(11):4254. doi: 10.1182/blood.V112.11.4254.4254
  • Zehtabcheh S, Yousefi A-M, Salari S, et al. Abrogation of histone deacetylases (HDACs) decreases survival of chronic myeloid leukemia cells: new insight into attenuating effects of the PI3K/c-myc axis on panobinostat cytotoxicity. Cell Biol Int. 2021;45:1111–1121. 5 10.1002/cbin.11557
  • Matsuda Y, Yamauchi T, Hosono N, et al. Combination of panobinostat with ponatinib synergistically overcomes imatinib-resistant CML cells. Cancer Sci. 2016;107(7):1029–1038. doi: 10.1111/cas.12965
  • He B, Wang Q, Liu X, et al. A novel HDAC inhibitor chidamide combined with imatinib synergistically targets tyrosine kinase inhibitor resistant chronic myeloid leukemia cells. Biomed Pharmacother. 2020;129:110390. doi: 10.1016/j.biopha.2020.110390
  • Ye J, Zha J, Shi Y, et al. Co-inhibition of HDAC and MLL-menin interaction targets MLL-rearranged acute myeloid leukemia cells via disruption of DNA damage checkpoint and DNA repair. Clin Epigenetics. 2019;11(1):137. doi: 10.1186/s13148-019-0723-0
  • Yin L, Zhang Q, Xie S, et al. HDAC inhibitor chidamide overcomes drug resistance in chronic myeloid leukemia with the T315i mutation through the akt–autophagy pathway. Hum Cell. 2023;36(4):1564–1577. doi: 10.1007/s13577-023-00919-1
  • Liu Y, Yang Q. The roles of EZH2 in cancer and its inhibitors. Med Oncol. 2023;40(6):167. doi: 10.1007/s12032-023-02025-6
  • Xie H, Peng C, Huang J, et al. Chronic myelogenous leukemia– initiating cells require polycomb group protein EZH2. Cancer Discov. 2016;6(11):1237–1247. doi: 10.1158/2159-8290.CD-15-1439
  • Scott MT, Korfi K, Saffrey P, et al. Epigenetic reprogramming sensitizes CML stem cells to combined EZH2 and tyrosine kinase inhibition. Cancer Discov. 2016;6(11):1248–1257. doi: 10.1158/2159-8290.CD-16-0263
  • Chalandon Y, Sbianchi G, Gras L, et al. Allogeneic hematopoietic cell transplantation in patients with chronic phase chronic myeloid leukemia in the era of third generation tyrosine kinase inhibitors: a retrospective study by the chronic malignancies working party of the EBMT. Am J Hematol. 2023;98(1):112–121. doi: 10.1002/ajh.26764
  • Masouridi-Levrat S, Olavarria E, Iacobelli S, et al. Outcomes and toxicity of allogeneic hematopoietic cell transplantation in chronic myeloid leukemia patients previously treated with second-generation tyrosine kinase inhibitors: a prospective non-interventional study from the chronic malignancy working party of the EBMT. Bone Marrow Transplant. 2022;57(1):23–30. doi: 10.1038/s41409-021-01472-x
  • Arora M, Weisdorf DJ, Spellman SR, et al. HLA-identical sibling compared with 8/8 matched and mismatched unrelated donor bone marrow transplant for chronic phase chronic myeloid leukemia. J Clin Oncol. 2009;27(10):1644–52. doi: 10.1200/JCO.2008.18.7740
  • Ortí G, Gras L, Koster L, et al. Graft-versus-host disease prophylaxis with Post- transplantation cyclophosphamide in chronic myeloid leukemia patients undergoing allogeneic hematopoietic cell transplantation from an unrelated or mismatched related donor: a comparative study from the chronic malignancies working party of the EBMT (CMWP-EBMT). Transplant Cell Ther. 2024;30(1):e93.1–e93.12. doi: 10.1016/j.jtct.2023.09.019
  • Yetisgin AA, Cetinel S, Zuvin M, et al. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193. doi: 10.3390/molecules25092193
  • Houshmand M, Garello F, Circosta P, et al. Nanocarriers as magic bullets in the treatment of leukemia. Nanomaterials. 2020;10(2):276. doi: 10.3390/nano10020276

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.