231
Views
0
CrossRef citations to date
0
Altmetric
Review

Current and emerging pharmacotherapies for cytokine release syndrome, neurotoxicity, and hemophagocytic lymphohistiocytosis-like syndrome due to CAR T cell therapy

ORCID Icon, &
Pages 263-279 | Received 12 Dec 2023, Accepted 01 Mar 2024, Published online: 10 Apr 2024

References

  • Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer. 2021 Mar;21(3):145–161. doi: 10.1038/s41568-020-00323-z
  • Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011 Aug 25;365(8):725–733. doi: 10.1056/NEJMoa1103849
  • Majzner RG, Mackall CL. Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 2019 Sep;25(9):1341–1355. doi: 10.1038/s41591-019-0564-6
  • Schett G, Mackensen A, Mougiakakos D. CAR T-cell therapy in autoimmune diseases. Lancet. 2023 Sep 22;402(10416):2034–2044. doi: 10.1016/S0140-6736(23)01126-1
  • Mackensen A, Muller F, Mougiakakos D, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med. 2022 Oct;28(10):2124–2132.
  • Mougiakakos D, Kronke G, Volkl S, et al. CD19-Targeted CAR T cells in refractory systemic lupus erythematosus. N Engl J Med. 2021 Aug 5;385(6):567–569. doi: 10.1056/NEJMc2107725
  • Muller F, Taubmann J, Bucci L, et al. CD19 CAR T-Cell therapy in autoimmune disease - a case series with follow-up. N Engl J Med. 2024 Feb 22;390(8):687–700. doi: 10.1056/NEJMoa2308917
  • Muller F, Boeltz S, Knitza J, et al. CD19-targeted CAR T cells in refractory antisynthetase syndrome. Lancet. 2023 Mar 11;401(10379):815–818. doi: 10.1016/S0140-6736(23)00023-5
  • Pecher AC, Hensen L, Klein R, et al. CD19-Targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA. 2023 Jun 27;329(24):2154–2162. doi: 10.1001/jama.2023.8753
  • Bergmann C, Muller F, Distler JHW, et al. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann Rheum Dis. 2023 Aug;82(8):1117–1120.
  • Qin C, Tian DS, Zhou LQ, et al. Anti-BCMA CAR T-cell therapy CT103A in relapsed or refractory AQP4-IgG seropositive neuromyelitis optica spectrum disorders: phase 1 trial interim results. Signal Transduct Target Ther. 2023 Jan 4;8(1):5. doi: 10.1038/s41392-022-01278-3
  • Granit V, Benatar M, Kurtoglu M, et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 2023 Jul;22(7):578–590.
  • Frigault MJ, Maus MV. State of the art in CAR T cell therapy for CD19+ B cell malignancies. J Clin Invest. 2020 Apr 1;130(4):1586–1594. doi: 10.1172/JCI129208
  • Maude SL, Barrett D, Teachey DT, et al. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014 Mar;20(2):119–122.
  • Maus MV, Alexander S, Bishop MR, et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. J Immunother Cancer. 2020 Dec;8(2):e001511. doi: 10.1136/jitc-2020-001511
  • Santomasso BD, Nastoupil LJ, Adkins S, et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-Cell Therapy: ASCO guideline. J Clin Oncol. 2021 Dec 10;39(35):3978–3992. doi: 10.1200/JCO.21.01992
  • Ludwig H, Terpos E, van de Donk N, et al. Prevention and management of adverse events during treatment with bispecific antibodies and CAR T cells in multiple myeloma: a consensus report of the European Myeloma Network. Lancet Oncol. 2023 Jun;24(6):e255–e269.
  • Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019 Apr;25(4):625–638. doi: 10.1016/j.bbmt.2018.12.758
  • Morris EC, Neelapu SS, Giavridis T, et al. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 2022 Feb;22(2):85–96.
  • Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014 Jul 10;124(2):188–195. doi: 10.1182/blood-2014-05-552729
  • Porter D, Frey N, Wood PA, et al. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J Hematol Oncol. 2018 Mar 2;11(1):35. doi: 10.1186/s13045-018-0571-y
  • Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018 Jan;15(1):47–62.
  • Mucha SR, Rajendram P. Management and prevention of cellular-therapy-related toxicity: early and late complications. Curr Oncol. 2023 May 15;30(5):5003–5023. doi: 10.3390/curroncol30050378
  • Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016 Jun;6(6):664–679.
  • Diorio C, Shraim R, Myers R, et al. Comprehensive serum proteome profiling of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome patients with B-Cell all receiving CAR T19. Clin Cancer Res. 2022 Sep 1;28(17):3804–3813. doi: 10.1158/1078-0432.CCR-22-0822
  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015 Feb 7;385(9967):517–528. doi: 10.1016/S0140-6736(14)61403-3
  • Bailey SR, Vatsa S, Larson RC, et al. Blockade or deletion of ifngamma reduces macrophage activation without compromising CAR T-cell function in hematologic malignancies. Blood Cancer Discov. 2022 Mar 1;3(2):136–153. doi: 10.1158/2643-3230.BCD-21-0181
  • Hines MR, Knight TE, McNerney KO, et al. Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. Transplant Cell Ther. 2023 Jul;29(7):.e438.1–.e438.16. doi: 10.1016/j.jtct.2023.03.006
  • Lichtenstein DA, Schischlik F, Shao L, et al. Characterization of HLH-like manifestations as a CRS variant in patients receiving CD22 CAR T cells. Blood. 2021 Dec 16;138(24):2469–2484. doi: 10.1182/blood.2021011898
  • Kennedy VE, Wong C, Huang CY, et al. Macrophage activation syndrome-like (MAS-L) manifestations following BCMA-directed CAR T cells in multiple myeloma. Blood Adv. 2021 Dec 14;5(23):5344–5348. doi: 10.1182/bloodadvances.2021005020
  • Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018 Jun;24(6):739–748.
  • Giavridis T, van der Stegen SJC, Eyquem J, et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018 Jun;24(6):731–738.
  • Dean EA, Mhaskar RS, Lu H, et al. High metabolic tumor volume is associated with decreased efficacy of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020 Jul 28;4(14):3268–3276. doi: 10.1182/bloodadvances.2020001900
  • Hay KA, Hanafi LA, Li D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017 Nov 23;130(21):2295–2306. doi: 10.1182/blood-2017-06-793141
  • Kadauke S, Myers RM, Li Y, et al. Risk-adapted preemptive tocilizumab to prevent severe cytokine release syndrome after CTL019 for pediatric B-Cell acute lymphoblastic leukemia: a prospective clinical trial. J Clin Oncol. 2021 Mar 10;39(8):920–930. doi: 10.1200/JCO.20.02477
  • Bachy E, Le Gouill S, Di Blasi R, et al. A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma. Nat Med. 2022 Oct;28(10):2145–2154.
  • Wu L, Chen J, Cai R, et al. Difference in efficacy and safety of anti-cd19 chimeric antigen receptor T-Cell therapy containing 4-1BB and CD28 co-stimulatory domains for B-Cell acute lymphoblastic leukemia. Cancers (Basel). 2023 May 15;15(10):2767. doi: 10.3390/cancers15102767
  • Salter AI, Ivey RG, Kennedy JJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal. 2018 Aug 21;11(544). doi: 10.1126/scisignal.aat6753
  • van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015 Jul;14(7):499–509. doi: 10.1038/nrd4597
  • Frigault M, Rotte A, Ansari A, et al. Dose fractionation of CAR-T cells. A systematic review of clinical outcomes. J Exp Clin Cancer Res. 2023 Jan 10;42(1):11. doi: 10.1186/s13046-022-02540-w
  • Frey NV, Shaw PA, Hexner EO, et al. Optimizing chimeric antigen receptor T-Cell therapy for adults with acute lymphoblastic leukemia. J Clin Oncol. 2020 Feb 10;38(5):415–422. doi: 10.1200/JCO.19.01892
  • Miller KC, Johnson PC, Abramson JS, et al. Effect of granulocyte colony-stimulating factor on toxicities after CAR T cell therapy for lymphoma and myeloma. Blood Cancer J. 2022 Nov 1;12(10):146. doi: 10.1038/s41408-022-00741-2
  • Cao M, Han S, Qiu Y, et al. Early granulocyte colony stimulating factor administration increases the risk of cytokine release syndrome in acute lymphoblastic leukemia patients receiving anti-CD19 chimeric antigen receptor T-cell therapy. Hematol Oncol. 2023 May 31;41(5):933–941. doi: 10.1002/hon.3188
  • Bhaskar ST, Patel VG, Porter DL, et al. Chimeric antigen receptor T-cell therapy yields similar outcomes in patients with and without cytokine release syndrome. Blood Adv. 2023 Sep 12;7(17):4765–4772. doi: 10.1182/bloodadvances.2022008937
  • Davis JA, Gaffney KJ, McGann M, et al. Fever characteristics and impact on safety and efficacy of chimeric antigen receptor T-cell therapy. Clin Lymphoma Myeloma Leuk. 2023 Jan;23(1):e14–e18.
  • Ferreri CJ, Hildebrandt MAT, Hashmi H, et al. Real-world experience of patients with multiple myeloma receiving ide-cel after a prior BCMA-targeted therapy. Blood Cancer J. 2023 Aug 9;13(1):117. doi: 10.1038/s41408-023-00886-8
  • Ram R, Grisariu S, Shargian-Alon L, et al. Toxicity and efficacy of chimeric antigen receptor T-cell therapy in patients with diffuse large B-cell lymphoma above the age of 70 years compared to younger patients - a matched control multicenter cohort study. Haematologica. 2022 May 1;107(5):1111–1118. doi: 10.3324/haematol.2021.278288
  • Lin RJ, Lobaugh SM, Pennisi M, et al. Impact and safety of chimeric antigen receptor T-cell therapy in older, vulnerable patients with relapsed/refractory large B-cell lymphoma. Haematologica. 2021 Jan 1;106(1):255–258. doi: 10.3324/haematol.2019.243246
  • Neelapu SS, Jacobson CA, Oluwole OO, et al. Outcomes of older patients in ZUMA-1, a pivotal study of axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood. 2020 Jun 4;135(23):2106–2109. doi: 10.1182/blood.2019004162
  • Reyes KR, Huang CY, Lo M, et al. Safety and Efficacy of BCMA CAR-T cell therapy in older patients with multiple myeloma. Transplant Cell Ther. 2023 Jun;29(6):350–355.
  • Rajeeve S, Usmani SZ. How old is too old for CAR-T cell therapies in multiple myeloma? Transplant Cell Ther. 2023 Jun;29(6):343–344. doi: 10.1016/j.jtct.2023.05.001
  • Davis JA, Dima D, Ahmed N, et al. Impact of frailty on outcomes after chimeric antigen receptor T cell therapy for patients with relapsed/refractory multiple myeloma. Transplant Cell Ther. 2023 Dec 22;30(3):298–305. https://pubmed.ncbi.nlm.nih.gov/38142943/
  • Peres LC, Oswald LB, Dillard CM, et al. Racial and ethnic differences in clinical outcomes among patients with multiple myeloma treated with CAR T-cell therapy. Blood Adv. 2024 Jan 9;8(1):251–259. doi: 10.1182/bloodadvances.2023010894
  • Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018 Aug;8(8):958–971.
  • Grant SJ, Grimshaw AA, Silberstein J, et al. Clinical presentation, risk factors, and outcomes of Immune effector cell-associated neurotoxicity syndrome following chimeric antigen receptor T cell therapy: a systematic review. Transplant Cell Ther. 2022 Jun;28(6):294–302.
  • Sterner RC, Sterner RM. Immune effector cell associated neurotoxicity syndrome in chimeric antigen receptor-T cell therapy. Front Immunol. 2022;13:879608. doi: 10.3389/fimmu.2022.879608
  • Traube C, Silver G, Kearney J, et al. Cornell assessment of pediatric delirium: a valid, rapid, observational tool for screening delirium in the PICU*. Crit Care Med. 2014 Mar;42(3):656–663.
  • Taraseviciute A, Tkachev V, Ponce R, et al. Chimeric antigen receptor T cell-mediated neurotoxicity in nonhuman primates. Cancer Discov. 2018 Jun;8(6):750–763.
  • Gust J, Hay KA, Hanafi LA, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017 Dec;7(12):1404–1419.
  • Galli E, Sora F, Hohaus S, et al. Endothelial activation predicts disseminated intravascular coagulopathy, cytokine release syndrome and prognosis in patients treated with anti-CD19 CAR-T cells. Br J Haematol. 2023 Apr;201(1):86–94.
  • Hong F, Shi M, Cao J, et al. Predictive role of endothelial cell activation in cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukaemia. J Cell Mol Med. 2021 Dec;25(24):11063–11074.
  • Topp MS, van Meerten T, Houot R, et al. Earlier corticosteroid use for adverse event management in patients receiving axicabtagene ciloleucel for large B-cell lymphoma. Br J Haematol. 2021 Nov;195(3):388–398.
  • Shah NN, Highfill SL, Shalabi H, et al. CD4/CD8 T-Cell selection affects chimeric antigen receptor (CAR) T-Cell potency and toxicity: updated results from a phase I Anti-CD22 CAR T-cell trial. J Clin Oncol. 2020 Jun 10;38(17):1938–1950. doi: 10.1200/JCO.19.03279
  • Teruya-Feldstein J, Setsuda J, Yao X, et al. MIP-1alpha expression in tissues from patients with hemophagocytic syndrome. Lab Invest. 1999 Dec;79(12):1583–1590.
  • Ou W, Zhao Y, Wei A, et al. Serum cytokine pattern in children with hemophagocytic lymphohistiocytosis. Ann Hematol. 2023 Apr;102(4):729–739.
  • Turtle CJ, Hanafi LA, Berger C, et al. CD19 CAR-T cells of defined CD4+: CD8+ composition in adult B cell all patients. J Clin Invest. 2016 Jun 1;126(6):2123–2138. doi: 10.1172/JCI85309
  • Lakomy T, Akhoundova D, Nilius H, et al. Early use of corticosteroids following CAR T-cell therapy correlates with reduced risk of high-grade CRS without negative impact on neurotoxicity or treatment outcome. Biomolecules. 2023 Feb 17;13(2):382. doi: 10.3390/biom13020382
  • Oluwole OO, Bouabdallah K, Munoz J, et al. Prophylactic corticosteroid use in patients receiving axicabtagene ciloleucel for large B-cell lymphoma. Br J Haematol. 2021 Aug;194(4):690–700.
  • Gardner RA, Ceppi F, Rivers J, et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood. 2019 Dec 12;134(24):2149–2158. doi: 10.1182/blood.2019001463
  • Strati P, Ahmed S, Furqan F, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137(23):3272–3276. doi: 10.1182/blood.2020008865
  • Nellan A, McCully CML, Cruz Garcia R, et al. Improved CNS exposure to tocilizumab after cerebrospinal fluid compared to intravenous administration in rhesus macaques. Blood. 2018 Aug 9;132(6):662–666. doi: 10.1182/blood-2018-05-846428
  • Nishimoto N, Terao K, Mima T, et al. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood. 2008 Nov 15;112(10):3959–3964. doi: 10.1182/blood-2008-05-155846
  • Neelapu SS. Managing the toxicities of CAR T-cell therapy. Hematol Oncol. 2019 Jun;37(Suppl 1):48–52. doi: 10.1002/hon.2595
  • Santomasso BD, Gust J, Perna F. How I treat unique and difficult-to-manage cases of CAR T-cell therapy-associated neurotoxicity. Blood. 2023 May 18;141(20):2443–2451. doi: 10.1182/blood.2022017604
  • JCAR015 in ALL: a root-cause investigation. Cancer Discov. 2018 Jan;8(1):4–5. doi: 10.1158/2159-8290.CD-NB2017-169
  • Torre M, Solomon IH, Sutherland CL, et al. Neuropathology of a case with fatal CAR T-cell-associated cerebral edema. J Neuropathol Exp Neurol. 2018 Oct 1;77(10):877–882. doi: 10.1093/jnen/nly064
  • Banerjee R, Marsal J, Huang CY, et al. Early time-to-tocilizumab after b cell maturation antigen-directed chimeric antigen receptor T cell therapy in myeloma. Transplant Cell Ther. 2021 Jun;27(6):.e477.1–.e477.7.
  • Caimi PF, Pacheco Sanchez G, Sharma A, et al. Prophylactic tocilizumab prior to anti-CD19 CAR-T cell therapy for non-hodgkin Lymphoma. Front Immunol. 2021;12:745320. doi: 10.3389/fimmu.2021.745320
  • De Philippis C, Mannina D, Giordano L, et al. Impact of preemptive use of tocilizumab on chimeric antigen receptor T cell outcomes in non-hodgkin lymphoma. Transplant Cell Ther. 2023 Jul;29(7):.e429.1–.e429.6.
  • Locke FL, Neelapu SS, Bartlett NL, et al. Preliminary results of prophylactic tocilizumab after axicabtageneciloleucel (axi-cel; KTE-C19) Treatment for patients with refractory,Aggressive Non-Hodgkin Lymphoma (NHL). Blood. 2017;130(Supplement 1):1547–1547. doi: 10.1182/blood.V130.Suppl_1.1547.1547
  • Liu Y, Jie X, Nian L, et al. A combination of pre-infusion serum ferritin, CRP and IL-6 predicts outcome in relapsed/refractory multiple myeloma patients treated with CAR-T cells. Front Immunol. 2023;14:1169071. doi: 10.3389/fimmu.2023.1169071
  • Wang Z, Han W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark Res. 2018;6(1):4. doi: 10.1186/s40364-018-0116-0
  • Wei Z, Xu J, Zhao C, et al. Prediction of severe CRS and determination of biomarkers in B cell-acute lymphoblastic leukemia treated with CAR-T cells. Front Immunol. 2023;14:1273507. doi: 10.3389/fimmu.2023.1273507
  • Zhou L, Fu W, Wu S, et al. Derivation and validation of a novel score for early prediction of severe CRS after CAR-T therapy in haematological malignancy patients: a multi-centre study. Br J Haematol. 2023 Aug;202(3):517–524.
  • Butt OH, Zhou AY, Ances BM, et al. A systematic framework for predictive biomarkers in immune effector cell-associated neurotoxicity syndrome. Front Neurol. 2023;14:1110647. doi: 10.3389/fneur.2023.1110647
  • Karschnia P, Jordan JT, Forst DA, et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood. 2019 May 16;133(20):2212–2221. doi: 10.1182/blood-2018-12-893396
  • Narkhede MDS, Bal A, Shea S, et al. 165. Interim analysis of investigator-initiated phase 2 trial of siltuximab in treatment of cytokine release syndrome and immune effector cell associated neurotoxicity related to CAR T-Cell therapy. Tandem Meetings. Transplantation and Cellular Therapy Meetings of ASTCT and CIBMTR.;2023 Feb 16; Orlando, Florida.
  • Li X, Gong N, Tian F, et al. Suppression of cytokine release syndrome during CAR-T-cell therapy via a subcutaneously injected interleukin-6-adsorbing hydrogel. Nat Biomed Eng. 2023 Sep;7(9):1129–1141.
  • Yang Y, Zhang Y, Xing X, et al. IL-6 translation is a therapeutic target of human cytokine release syndrome. J Exp Med. 2023 Nov 6;220(11). doi: 10.1084/jem.20230577
  • Strati P, Jallouk A, Deng Q, et al. A phase 1 study of prophylactic anakinra to mitigate ICANS in patients with large B-cell lymphoma. Blood Adv. 2023 Nov 14;7(21):6785–6789. doi: 10.1182/bloodadvances.2023010653
  • Ishii K, Shalabi H, Yates B, et al. Tocilizumab-refractory cytokine release syndrome (CRS) triggered by chimeric antigen receptor (CAR)-Transduced T cells may have distinct cytokine profiles compared to typical CRS. Blood. 2016;128(22):3358–3358. doi: 10.1182/blood.V128.22.3358.3358
  • Wehrli M, Gallagher K, Chen YB, et al. Single-center experience using anakinra for steroid-refractory immune effector cell-associated neurotoxicity syndrome (ICANS). J Immunother Cancer. 2022 Jan;10(1):e003847.
  • Strati P, Ahmed S, Kebriaei P, et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv. 2020 Jul 14;4(13):3123–3127. doi: 10.1182/bloodadvances.2020002328
  • Park JH, Nath K, Devlin SM, et al. CD19 CAR T-cell therapy and prophylactic anakinra in relapsed or refractory lymphoma: phase 2 trial interim results. Nat Med. 2023 Jul;29(7):1710–1717.
  • Oliai C, Crosetti A, Vos SD, et al. IL-1 receptor antagonist for prevention of severe immune effector cell-associated neurotoxicity syndrome. J Clin Oncol. 2021;39(15_suppl):7566–7566. doi: 10.1200/JCO.2021.39.15_suppl.7566
  • Frigault MJ, Gallagher KME, Wehrli M, et al. A Phase II Trial of Anakinra for the Prevention of CAR-T Cell Mediated Neurotoxicity. Blood. 2021;138(Supplement 1):2814–2814. doi: 10.1182/blood-2021-146927
  • Costa LJ, Mailankody S, Shaughnessy P, et al. Anakinra (AKR) prophylaxis (ppx) in patients (pts) with relapsed/refractory multiple myeloma (RRMM) receiving orvacabtagene autoleucel (orva-cel). J Clin Oncol. 2021;39(15_suppl):2537–2537. doi: 10.1200/JCO.2021.39.15_suppl.2537
  • Gazeau N, Liang EC, Wu QV, et al. Anakinra for refractory cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome after chimeric antigen receptor T Cell Therapy. Transplant Cell Ther. 2023 Jul;29(7):430–437.
  • Galea J, Ogungbenro K, Hulme S, et al. Intravenous anakinra can achieve experimentally effective concentrations in the central nervous system within a therapeutic time window: results of a dose-ranging study. J Cereb Blood Flow Metab. 2011 Feb;31(2):439–447.
  • Shakoory B, Geerlinks A, Wilejto M, et al. The 2022 EULAR/ACR points to consider at the early stages of diagnosis and management of suspected haemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS). Arthritis Rheumatol. 2023 Oct;75(10):1714–1732.
  • Kochenderfer JN, Somerville RPT, Lu T, et al. Lymphoma remissions caused by Anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol. 2017 Jun 1;35(16):1803–1813. doi: 10.1200/JCO.2016.71.3024
  • Schroder K, Hertzog PJ, Ravasi T, et al. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukocyte Biol. 2004 Feb;75(2):163–189.
  • Manni S, Del Bufalo F, Merli P, et al. Neutralizing IFNgamma improves safety without compromising efficacy of CAR-T cell therapy in B-cell malignancies. Nat Commun. 2023 Jun 9;14(1):3423. doi: 10.1038/s41467-023-38723-y
  • Larson RC, Kann MC, Bailey SR, et al. CAR T cell killing requires the IFNgammaR pathway in solid but not liquid tumours. Nature. 2022 Apr;604(7906):563–570.
  • McNerney KO, DiNofia AM, Teachey DT, et al. Potential Role of IFNγ Inhibition in refractory cytokine release syndrome associated with CAR T-cell therapy. Blood Cancer Discovery. 2022;3(2):90–94. doi: 10.1158/2643-3230.BCD-21-0203
  • Boulch M, Cazaux M, Cuffel A, et al. A major role for CD4(+) T cells in driving cytokine release syndrome during CAR T cell therapy. Cell Rep Med. 2023 Sep 19;4(9):101161. doi: 10.1016/j.xcrm.2023.101161
  • Rainone M, Ngo D, Baird JH, et al. Interferon-gamma blockade in CAR T-cell therapy-associated macrophage activation syndrome/hemophagocytic lymphohistiocytosis. Blood Adv. 2023 Feb 28;7(4):533–536. doi: 10.1182/bloodadvances.2022008256
  • Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-Cell therapy in refractory large B-Cell lymphoma. N Engl J Med. 2017 Dec 28;377(26):2531–2544. doi: 10.1056/NEJMoa1707447
  • Dibas A, Rhiel M, Patel VB, et al. Cell-based models of ‘cytokine release syndrome’ endorse CD40L and granulocyte–macrophage colony-stimulating factor knockout in chimeric antigen receptor T cells as mitigation strategy. Cells. 2023 Nov 6;12(21):2581. doi: 10.3390/cells12212581
  • Sachdeva M, Duchateau P, Depil S, et al. Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators. J Biol Chem. 2019 Apr 5;294(14):5430–5437. doi: 10.1074/jbc.AC119.007558
  • Sterner RM, Sakemura R, Cox MJ, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood. 2019 Feb 14;133(7):697–709. doi: 10.1182/blood-2018-10-881722
  • Oluwole OO, Kenderian SS, Shiraz P, et al. ZUMA-19: a phase 1/2 study of axicabtagene ciloleucel plus lenzilumab in patients with relapsed or refractory large B-Cell lymphoma. Blood. 2022;140(Supplement 1):10318–10320. doi: 10.1182/blood-2022-167688
  • Kenderian SS, Durrant C, Chappell D, et al. A Phase 2/3 randomized, placebo-controlled, open-label, multi-center trial of lenzilumab to improve the safety and efficacy of CAR-T cell therapy in adults with relapsed or refractory large B-cell lymphoma (The SHIELD Study). Blood. 2021;138(Supplement 1):1758–1758. doi: 10.1182/blood-2021-153987
  • Tanaka Y, Luo Y, O’Shea JJ, et al. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol. 2022 Mar;18(3):133–145.
  • Pan J, Deng B, Ling Z, et al. Ruxolitinib mitigates steroid-refractory CRS during CAR T therapy. J Cell Mol Med. 2021 Jan;25(2):1089–1099.
  • Zi FM, Ye LL, Zheng JF, et al. Using JAK inhibitor to treat cytokine release syndrome developed after chimeric antigen receptor T cell therapy for patients with refractory acute lymphoblastic leukemia: A case report. Medicine (Baltimore). 2021 May 14;100(19):e25786. doi: 10.1097/MD.0000000000025786
  • Frigault MMT, Park JH, Lazaryan A, et al. Poste 356. Itacitinib for the prevention of immune effector cell therapy–associated cytokine release syndrome: results from the Phase 2 Incb 39110-211 placebo-controlled randomized cohort. poster presented at: ASH Annual Meeting and Exposition.; 2023 Dec 09; San Diego, California.
  • Pratta MB, DiPersio JF, Maziarz RT, et al. JAK1 Inhibition during CAR T-Cell treatment does not affect CAR T-Cell proliferation, persistence, or function. Blood. 2022;140(Supplement 1):10350–10351. doi: 10.1182/blood-2022-169382
  • Huarte E, O’Connor RS, Peel MT, et al. Itacitinib (INCB039110), a JAK1 inhibitor, reduces cytokines associated with cytokine release syndrome induced by CAR T-cell therapy. Clin Cancer Res. 2020 Dec 1;26(23):6299–6309. doi: 10.1158/1078-0432.CCR-20-1739
  • Xu N, Yang XF, Xue SL, et al. Ruxolitinib reduces severe CRS response by suspending CAR-T cell function instead of damaging CAR-T cells. Biochem Biophys Res Commun. 2022 Mar 5;595:54–61. doi: 10.1016/j.bbrc.2022.01.070
  • Keenan C, Nichols KE, Albeituni S. Use of the JAK Inhibitor ruxolitinib in the treatment of hemophagocytic lymphohistiocytosis. Front Immunol. 2021;12:614704. doi: 10.3389/fimmu.2021.614704
  • Porter TJ, Lazarevic A, Ziggas JE, et al. Hyperinflammatory syndrome resembling haemophagocytic lymphohistiocytosis following axicabtagene ciloleucel and brexucabtagene autoleucel. Br J Haematol. 2022 Dec;199(5):720–727.
  • Mazodier K, Marin V, Novick D, et al. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome. Blood. 2005 Nov 15;106(10):3483–3489. doi: 10.1182/blood-2005-05-1980
  • Weiss ES, Girard-Guyonvarc’h C, Holzinger D, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018 Mar 29;131(13):1442–1455. doi: 10.1182/blood-2017-12-820852
  • Ruella M, Kenderian SS, Shestova O, et al. Kinase inhibitor ibrutinib to prevent cytokine-release syndrome after anti-CD19 chimeric antigen receptor T cells for B-cell neoplasms. Leukemia. 2017 Jan;31(1):246–248.
  • Jordan G, Alexandre VH, Janaki P, et al. Feasibility and efficacy of CD19-targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood. 2020;135(19):1650–1660. doi: 10.1182/blood.2019002936
  • Brown JR, Eichhorst B, Hillmen P, et al. Zanubrutinib or ibrutinib in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2023 Jan 26;388(4):319–332. doi: 10.1056/NEJMoa2211582
  • Mestermann K, Giavridis T, Weber J, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med. 2019 Jul 3;11(499). doi: 10.1126/scitranslmed.aau5907
  • Weber EW, Lynn RC, Sotillo E, et al. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 2019 Mar 12;3(5):711–717. doi: 10.1182/bloodadvances.2018028720
  • Weber EW, Parker KR, Sotillo E, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021 Apr 2;372(6537). doi: 10.1126/science.aba1786
  • Baur K, Heim D, Beerlage A, et al. Dasatinib for treatment of CAR T-cell therapy-related complications. J Immunother Cancer. 2022 Dec;10(12):e005956.
  • Amatya PN, Jayasinghe RG, Carter AJ, et al. The dual PI3Kdg inhibitor duvelisib potently inhibits cytokine release syndrome (CRS) while maintaining CAR-T function. Blood. 2022;140(Supplement 1):12686–12687. doi: 10.1182/blood-2022-167715
  • Amatya PN, Carter AJ, Ritchey JK, et al. The dual PI3Kδγ inhibitor duvelisib potently inhibits IL-6 production and cytokine release syndrome (CRS) while maintaining CAR-T function in vitro and in vivo. Blood. 2020;136(Supplement 1):1–2. doi: 10.1182/blood-2020-139904
  • Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013 Apr 18;368(16):1509–1518. doi: 10.1056/NEJMoa1215134
  • Chen Y, Li R, Shang S, et al. Therapeutic Potential of TNFalpha and IL1beta Blockade for CRS/ICANS in CAR-T Therapy via Ameliorating Endothelial Activation. Front Immunol. 2021;12:623610. doi: 10.3389/fimmu.2021.623610
  • Zhang L, Wang S, Xu J, et al. Etanercept as a new therapeutic option for cytokine release syndrome following chimeric antigen receptor T cell therapy. Exp Hematol Oncol. 2021 Feb 19;10(1):16. doi: 10.1186/s40164-021-00209-2
  • Shalabi H, Harrison C, Yates B, et al. Intrathecal hydrocortisone for treatment of children and young adults with CAR T-cell immune-effector cell-associated neurotoxicity syndrome. Pediatr Blood Cancer. 2023 Oct 27;71(1):e30741. doi: 10.1002/pbc.30741
  • Zurko JC, Johnson BD, Aschenbrenner E, et al. Use of early intrathecal therapy to manage high-grade immune effector cell-associated neurotoxicity syndrome. JAMA Oncol. 2022 May 1;8(5):773–775. doi: 10.1001/jamaoncol.2022.0070
  • Asawa P, Vusqa U, Khan C, et al. Intrathecal Chemotherapy as a potential treatment for steroid-refractory immune effector cell-associated neurotoxicity syndrome. Anticancer Res. 2022 Aug;42(8):3853–3856.
  • Shah NN, Johnson BD, Fenske TS, et al. Intrathecal chemotherapy for management of steroid-refractory CAR T-cell-associated neurotoxicity syndrome. Blood Adv. 2020 May 26;4(10):2119–2122. doi: 10.1182/bloodadvances.2020001626
  • Wang M, Jain P, Chi TL, et al. Management of a patient with mantle cell lymphoma who developed severe neurotoxicity after chimeric antigen receptor T-cell therapy in ZUMA-2. J Immunother Cancer. 2020 Oct;8(2):e001114.
  • Peterlin P, Garnier A, Le Bourgeois A, et al. Dramatic recovery after etoposide phosphate infusion for hemophagocytic lymphohistiocytosis/macrophage activation syndrome following treatment with tisagenlecleucel in a young patient with relapsed acute lymphoblastic leukemia: a case report. Acta Haematol. 2022;145(5):537–541. doi: 10.1159/000525576
  • Graham CE, Lee WH, Wiggin HR, et al. Chemotherapy-induced reversal of ciltacabtagene autoleucel-associated movement and neurocognitive toxicity. Blood. 2023 Oct 5;142(14):1248–1252. doi: 10.1182/blood.2023021429
  • Jacobson CA, Rosenthal AC, Arnason J, et al. A phase 2 trial of defibrotide for the prevention of chimeric antigen receptor T-cell-associated neurotoxicity syndrome. Blood Adv. 2023 Nov 14;7(21):6790–6799. doi: 10.1182/bloodadvances.2023009961
  • Richardson PG, Palomo M, Kernan NA, et al. The importance of endothelial protection: the emerging role of defibrotide in reversing endothelial injury and its sequelae. Bone Marrow Transplant. 2021 Dec;56(12):2889–2896.
  • Niemela J, Ifergan I, Yegutkin GG, et al. IFN-beta regulates CD73 and adenosine expression at the blood-brain barrier. Eur J Immunol. 2008 Oct;38(10):2718–2726.
  • Floris S, Ruuls SR, Wierinckx A, et al. Interferon-beta directly influences monocyte infiltration into the central nervous system. J Neuroimmunol. 2002 Jun;127(1–2):69–79.
  • Sakemura RL, Manriquez Roman C, Horvei P, et al. CD19 occupancy with tafasitamab increases therapeutic index of CART19 cell therapy and diminishes severity of CRS. Blood. 2023 Oct 25;143(3):258–271. doi: 10.1182/blood.2022018905
  • Xiao X, He X, Li Q, et al. Plasma exchange can be an alternative therapeutic modality for severe cytokine release syndrome after chimeric antigen receptor-T cell infusion: a case report. Clin Cancer Res. 2019 Jan 1;25(1):29–34. doi: 10.1158/1078-0432.CCR-18-1379
  • Liu Y, Chen X, Wang D, et al. Hemofiltration successfully eliminates severe cytokine release syndrome following CD19 CAR-T-cell therapy. J Immunother. 2018 Nov;41(9):406–410.
  • Stahl K, Schmidt BMW, Hoeper MM, et al. Extracorporeal cytokine removal in severe CAR-T cell associated cytokine release syndrome. J Crit Care. 2020 Jun;57:124–129. doi: 10.1016/j.jcrc.2020.02.010
  • Singbartl K, Rosenthal A, Leis J, et al. Novel use of extracorporeal blood purification for treatment of severe, refractory neurotoxicity after chimeric antigen receptor T-cell therapy-A case report. Crit Care Explor. 2021 Jul;3(7):e0472.
  • Tan AHJ, Vinanica N, Campana D. Chimeric antigen receptor-T cells with cytokine neutralizing capacity. Blood Adv. 2020 Apr 14;4(7):1419–1431. doi: 10.1182/bloodadvances.2019001287
  • Zhang H, Lv X, Kong Q, et al. IL-6/IFN-gamma double knockdown CAR-T cells reduce the release of multiple cytokines from PBMCs in vitro. Hum Vaccin Immunother. 2022 Dec 31;18(1):1–14. doi: 10.1080/21645515.2021.2016005
  • Zhou JE, Sun L, Jia Y, et al. Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo. J Control Release. 2022 Oct;350:298–307. doi: 10.1016/j.jconrel.2022.08.033
  • Gong WJ, Qiu Y, Li MH, et al. Investigation of the risk factors to predict cytokine release syndrome in relapsed or refractory B-cell acute lymphoblastic leukemia patients receiving IL-6 knocking down anti-CD19 chimeric antigen receptor T-cell therapy. Front Immunol. 2022;13:922212. doi: 10.3389/fimmu.2022.922212
  • Xue L, Yi Y, Xu Q, et al. Chimeric antigen receptor T cells self-neutralizing IL6 storm in patients with hematologic malignancy. Cell Discov. 2021 Sep 14;7(1):84. doi: 10.1038/s41421-021-00299-6
  • Yi Y, Chai X, Zheng L, et al. CRISPR-edited CART with GM-CSF knockout and auto secretion of IL6 and IL1 blockers in patients with hematologic malignancy. Cell Discov. 2021 Apr 27;7(1):27. doi: 10.1038/s41421-021-00255-4
  • Straathof KC, Pule MA, Yotnda P, et al. An inducible caspase 9 safety switch for T-cell therapy. Blood. 2005 Jun 1;105(11):4247–4254. doi: 10.1182/blood-2004-11-4564
  • Diaconu I, Ballard B, Zhang M, et al. Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T Cells. Mol Ther. 2017 Mar 1;25(3):580–592. doi: 10.1016/j.ymthe.2017.01.011
  • Foster MC, Savoldo B, Lau W, et al. Utility of a safety switch to abrogate CD19.CAR T-cell-associated neurotoxicity. Blood. 2021 Jun 10;137(23):3306–3309. doi: 10.1182/blood.2021010784
  • Giordano-Attianese G, Gainza P, Gray-Gaillard E, et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nat Biotechnol. 2020 Apr;38(4):426–432.
  • Mata M, Gerken C, Nguyen P, et al. Inducible Activation of MyD88 and CD40 in CAR T Cells results in controllable and potent antitumor activity in preclinical solid tumor models. Cancer Discov. 2017 Nov;7(11):1306–1319.
  • Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science. 2015 Oct 16;350(6258):aab4077. doi: 10.1126/science.aab4077
  • Paszkiewicz PJ, Frassle SP, Srivastava S, et al. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest. 2016 Nov 1;126(11):4262–4272. doi: 10.1172/JCI84813
  • Philip B, Kokalaki E, Mekkaoui L, et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood. 2014 Aug 21;124(8):1277–1287. doi: 10.1182/blood-2014-01-545020
  • Vogler I, Newrzela S, Hartmann S, et al. An improved bicistronic CD20/tCD34 vector for efficient purification and in vivo depletion of gene-modified T cells for adoptive immunotherapy. Mol Ther. 2010 Jul;18(7):1330–1338.
  • Gong N, Han X, Xue L, et al. In situ PEGylation of CAR T cells alleviates cytokine release syndrome and neurotoxicity. Nat Mater. 2023 Sep 11;22(12):1571–1580. doi: 10.1038/s41563-023-01646-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.