82
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Serum and cerebrospinal fluid biochemical markers of ALS

&
Pages 61-67 | Published online: 10 Jul 2009

References

  • Ishiguro K, Ohno H, Arai H, et al. Phosphorylated tau in human cerebrospinal fluid is a diagnostic marker for Alzheimer’s disease. Neurosci Lett 1999; 270: 91–94.
  • Marchetti P, Gutierrez J, Velia P, et al. Identification of IgG- specific oligoclonal banding in serum and cerebrospinal fluid by isoelectric focusing: description of a simplified method for the diagnosis of neurological disorders. Clin Chem Lab Med 1999; 37: 735–738.
  • Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59–62.
  • Hentati A, Bejaoui K, Pericak-Vance M, et al. Linkage of recessive familial amyotrophic lateral sclerosis to chromo- some 2q33-q35. Nat Genet 1994; 7: 425–428.
  • Chance PF, Rabin BA, Ryan SG, et al. Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. Am J Hum Genet 1998; 62: 633–640.
  • Al-Chalabi A, Enayat ZE, Bakker MC, et al. Association of apolipoprotein E e4 allele with bulbar onset motor neuron disease. Lancet 1996; 347: 159–160.
  • Figlewicz DA, Krizus A, Martinoli MG, et al. Variants of the heavy neurofilament subunit are associated with the devel- opment of amyotrophic lateral sclerosis. Hum Mol Genet 1994; 3: 1757–1761.
  • Erecinska AG, Silver IA. Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 1990; 35: 245–296.
  • Young AB, Penney JB. Pharmacological aspects of motor dys- function. In: Asbury AK, McKham GM, McDonald WI (eds). Diseases of the Nervous System, Clinical Neurobiology. Philadelphia: WB Saunders, 1992: 342–352.
  • Burke RE. Spinal cord: ventral horn. In: Shepherd GM (ed.) The Synaptic Organisation of the Brain. New York: Oxford University Press, 1990: 88–132.
  • Shaw PJ, Ince PG. Glutamate, excitotoxicity and amyotrophic lateral sclerosis. J Neurol 1997; 244(suppl 2): S3–S14.
  • Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 1999; 81: 163–221.
  • Plaitakis A, Constantakakis E, Smith J. The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol 1988; 24: 446–449.
  • Tsai GC, Stauch-Slusher B, Sim L, et al. Reductions in acidic amino acids and N-acetylaspartylglutamate in amyotrophic lateral sclerosis CNS. Brain Res 1991; 556: 151–156.
  • Rothstein JD, Tsai G, Kuncl RW, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990; 28: 18–25.
  • Rothstein JD, Kuncl RW, Chaudhry V, et al. Excitatory amino acids in amyotrophic lateral sclerosis: an update. Ann Neurol 1991; 30: 224–225.
  • Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease: ele- vation of CSF glutamate in a subset of patients. Neurodegen- eration 1995; 4: 209–216.
  • Camu W, Billiard M, Baldy-Moulinier M. Fasting plasma and CSF amino-acid levels in amyotrophic lateral sclerosis: a subtype analysis. Acta Neurol Scand 1993; 88: 1, 51–55.
  • Blin O, Samuel D, Nieoullon A, Serratice G. Changes in CSF amino acid concentrations during the evolution of amyo- trophic lateral sclerosis. J Neurol Neurosurg Psychiatry 1994; 57: 119–121.
  • Ferraro TN, Hare TA. Free and conjugated amino acids in human CSF: influence of age and sex. Brain Res 1985; 338: 53–60.
  • Niebroj-Dobosz I, Janik P. Amino acids acting as transmit- ters in amyotrophic lateral sclerosis (ALS). Acta Neurol Scand 1999; 100: 6–11.
  • Plaitakis A, Caroscio JT. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol 1987; 22: 575–579.
  • Perry TL, Kreiger C, Hansen S, Eisen A. Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid. Ann Neurol 1990; 28: 12–17.
  • Iwasaki Y, Ikeda K, Kinoshita M. Plasma amino acid levels in patients with amyotrophic lateral sclerosis. J Neurol Sci 1992; 107: 219–222.
  • Olney JW, Zorumski C, Price MT, Labruyere J. L-cysteine, a bicarbonate-sensitive endogenous excitotoxin. Science 1990; 248: 596–599.
  • Heafield MT, Fearn S, Steventon GB, Waring RH, Williams AC, Sturman SG. Plasma cysteine and sulfate levels in patients with motor-neurone, Parkinson’s and Alzheimer’s disease, Neurosci Lett 1990; 110: 216–220.
  • Perry TL, Krieger C, Hansen S, Tabatabaei A. Amyotrophic lateral sclerosis: fasting plasma levels of cysteine and inor- ganic sulphate are normal, as are brain contents of cysteine. Neurology 1991; 41: 487–490.
  • Zarbin MA, Wamsley JK, Kuhar MJ. Glycine receptor: light microscopic autoradiographic localization with [3H]strych- nine. J Neurosci 1981; 1: 532–547.
  • Geyer SW, Gudden W, Betz H, et al. Co-localisation of choline acetyltransferase and postsynaptic glycine receptors in motoneurons of rat spinal cord demonstrated by immunocytochemistry. Neurosci Lett 1987; 82: 11–15.
  • Bonhaus DW, Burge BC, McNamara JO. Biochemical evid- ence that glycine allosterically regulates an NMDA receptor- coupled ion channel. Eur J Pharmacol 1987; 142: 489–490.
  • de Belleroche J, Recordati A, Rose FC. Elevated levels of amino acids in the CSF of motor neuron disease patients. Neurochem Pathol 1984; 2: 1–6.
  • Lane RJ, Bandopadhyay R, de Belleroche J. Abnormal glycine metabolism in motor neurone disease: studies on plasma and cerebrospinal fluid. J R Soc Med 1993; 86: 501–505.
  • Meier DH, Schott KJ. Free amino acid pattern of cere- brospinal fluid in amyotrophic lateral sclerosis. Acta Neurol Scand 1988; 77: 50–53.
  • Curtis DR, Lacey G. GABA-B receptor-mediated spinal inhi- bition. NeuroReport 1994; 5: 540–542.
  • Enna SJ, Maggi A. Biochemical pharmacology of GABAergic agonists. Life Sci 1979; 24: 1727–1737.
  • Castro-Alamancos MA, Borrell J. Motor activity induced by disinhibition of the primary motor cortex of the rat is blocked by a non-NMDA glutamate receptor antagonist. Neurosci Lett 1993; 150: 183–186.
  • Bowery NG, Hill DR, Hudson AL, et al. Baclofen decreases neurotransmitter release in mammalian CNS by action at a novel GABA receptor. Nature 1980; 283: 92–94.
  • Gahwiler BH, Brown DA. GABAB receptor activated K1 current in voltage clamped CA3 pyramidal cells in hip- pocampal cultures. Proc Natl Acad Sci USA 1985; 82: 1558–1562.
  • Curtis DR, Lacey G. GABAB receptor-mediated spinal inhibi- tion. NeuroReport 1994; 5: 540–542.
  • Lahjouji F, Barbe A, Chazal G, Bras H. Evidence for colocal- ization of GABA and glycine in afferents to retrogradely labelled rat abducens motoneurones. Neurosci Lett 1996; 206: 161–164.
  • Okabe S, Woch G, Kubin L. Role of GABAB receptors in the control of hypoglossal motoneurons in vivo. NeuroReport 1994; 5: 2573–2576.
  • Ziegler MG, Brooks BR, Lake CR, Wood JH, Enna SJ. Norepi- nephrine and gamma-aminobutyric acid in amyotrophic lateral sclerosis. Neurology 1980; 30: 98–101.
  • Niebroj-Dobosz I, Domitrz I, Mickielewicz A. Cytotoxic activity of serum and cerebrospinal fluid of amyotrophic lateral sclerosis (ALS) patients against acetylcholinesterase. Folia Neuropathol 1999; 37: 107–112.
  • Hartikainen P, Reinikainen KJ, Soininen H, Sirvio J, Soikkeli R, Riekkinen PJ. Neurochemical markers in the cerebrospinal fluid of patients with Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis and normal con- trols. J Neural Transm Park Dis Dement Sect 1992; 4: 53–68.
  • Bowker RM, Westlund KN, Sullivan MC, Coulter JD. Organi- sation of descending serotonergic projections to the spinal cord. Prog Brain Res 1982; 57: 239–265.
  • Kojima M, Takeuchi Y, Goto M, Sano Y. Immunohistochem- ical study on the localisation of serotonin fibres and termi- nals in the spinal cord of the monkey (Macaca fuscata). Cell Tissue Res 1983; 229: 23–36.
  • Tremblay LE, Bedard PJ. Action of 5-hydroxytryptamine, substance P, thyrotropin-releasing hormone and clonidine on motor neurone excitability. Can J Neurol Sci 1987; 14: 506–509.
  • Zhang L. Effects of 5-hydroxytryptamine on cat spinal motoneurons. Can J Physiol Pharmacol 1991; 69: 154–163.
  • Cookson MR, Shaw PJ. Oxidative stress and motor neurone disease. Brain Pathol 1999; 9: 165–186.
  • Ferrante RJ, Browne SE, Shinobu LA, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 1997; 69: 2064–2074.
  • Beal MF, Ferrante RJ, Browne SE, Matthews RT, Kowall NW, Brown RH. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 1997; 42: 644–654.
  • Bowling AC, Schulz JB, Brown RH, Beal MF. Superoxide dis- mutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 1993; 61: 2322–2325.
  • Shaw PJ, Ince PG, Falkous G, Mantle D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 1995; 38: 691–695.
  • Ince PG, Shaw PJ, Candy JM, et al. Iron, selenium and glu- tathione peroxidase activity are elevated in sporadic motor neurone disease. Neurosci Lett 1994; 181: 87–90.
  • Shaw PJ, Chinnery RM, Thagesen H, Borthwick G, Ince PG. Immunocytochemical study of the distribution of the free radical scavenging enzymes Cu/Zn superoxide dismutase (SOD1), MN superoxide dismutase (MN SOD), and catalase in the normal human spinal cord and in motor neuron disease. J Neurol Sci 1997; 147: 115–125.
  • Oteiza PI, Uchitel OD, Carrasquedo F, Dubrovski AL, Roma JC, Fraga CG. Evaluation of antioxidants, protein and lipid oxidation products in blood from sporadic amyotrophic lateral sclerosis patients. Neurochem Res 1997; 22: 535–539.
  • de Bustos F, Jimenez-Jimenez FJ, Molina JA, et al. Cere- brospinal fluid levels of alpha-tocopherol in amyotrophic lateral sclerosis. J Neural Transm 1998; 105: 703–708.
  • Paraskevas GP, Kapaki E, Libitaki G, Zournas C, Segditsa I, Papageorgiou C. Ascorbate in healthy subjects, amyotrophic lateral sclerosis and Alzheimer’s disease. Acta Neurol Scand 1997; 96: 88–90.
  • Molina JA, de Bustos F, Jimenez-Jimenez FJ, et al. Serum levels of beta-carotene, alpha carotene and vitamin A in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 1999; 99: 315–317.
  • Iwasaki Y, Ikeda K, Kinoshita M. Vitamin A and E levels are normal in amyotrophic lateral sclerosis. J Neurol Sci 1995; 132: 193–194.
  • Smith GR, Henry YK, Mattson MP, Appel SH. Presence of 4- hydroxynonenal in cerebrospinal fluid of patients with spor- adic amyotrophic lateral sclerosis. Ann Neurol 1998; 44: 696–699.
  • Beckman JS, Carson M, Smith CD, Koppenol WH. ALS, SOD and peroxynitrite. Nature 1993; 364: 584.
  • Tohgi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C. Increase in oxidized NO products and reduction in oxidized glutathione in cerebrospinal fluid from patients with spor- adic form of amyotrophic lateral sclerosis. Neurosci Lett 1999; 260: 204–206.
  • Toghi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C. Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 1999; 46: 129–131.
  • Zabaleta ME, Bianco NE, DeSanctis J. Serum nitrotyrosine levels in patients with multiple sclerosis: relationship with clinical activity. Med Sci Res 1998; 26: 407–408.
  • Rothstein JD. Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis. Adv Neurol 1995; 68: 7–20.
  • Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 1995; 38: 73–84.
  • Shaw PJ, Chinnery RM, Ince PG. [3H]D-Aspartate binding sites in the normal human spinal cord and changes in motor neuron disease: a quantitative autoradiographic study. Brain Res 1994; 655: 195–201.
  • Fray AE, Banner SJ, Ince PG, Milton ID, Usher PA, Shaw PJ. The expression of the glial glutamate transporter EAAT2 in motor neurone disease: an immunohistochemical study. Eur J Neurosci 1998; 10: 2481–2489.
  • Lin CL, Bristol LA, Jin L, et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter in amyotrophic lateral sclerosis. Neuron 1998; 20: 589–602.
  • Nagai M, Abe K, Okamoto K, Itoyama Y. Identification of alternative splicing forms of GLT-1 mRNA in the spinal cord of amyotrophic lateral sclerosis patients. Neurosci Lett 1998; 244: 165–168.
  • Meyer T, Fromm A, Munch C, et al. The RNA of the gluta- mate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. J Neurol Sci 1999; 170: 45–50.
  • Honig LS, Gong Y-H, Bigio EH, Elliott JL. Glutamate trans- porter EAAT-2 splice variants are not specific to ALS, but are present in normal and Alzheimer disease brains. Neurology 1999; 52(suppl 2): A166–A167.
  • Camu W, Bacou F, Henderson CE. Toxicity of amyotrophic lateral sclerosis sera on purified embryonic rat motoneurons in vitro. Soc Neurosci Abstr 1994; 20: 619.
  • O’Shaughnessy TJ, Yan H, Kim J, et al. Amyotrophic lateral sclerosis: serum factors enhance spontaneous and evoked transmitter release at the neuromuscular junction. Muscle Nerve 1998; 21: 81–90.
  • Nagaraja TN, Gourie-Devi M, Nalini A, Raju TR. Neurofila- ment phosphorylation is enhanced in cultured chick spinal cord neurons exposed to cerebrospinal fluid from amyo- trophic lateral sclerosis patients. Acta Neuropath 1994; 88: 349–352.
  • Manabe Y, Kashihara K, Shiro Y, Shohmori T, Abe K. Enhanced Fos expression in rat lumbar spinal cord cultured with cerebrospinal fluid from patients with amyotrophic lateral sclerosis. Neurol Res 1999; 21: 309–312.
  • Couratier P, Hugon J, Sindou P, Vallat JM, Dumas M. Cell culture evidence for neuronal degeneration in amyotrophic lateral scelerosis being linked to AMPA/kainate receptors. Lancet 1993; 341: 265–268.
  • Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelso C. Patients with amyotrophic lateral sclerosis and other neu- rodegenerative diseases have increased levels of neurofila- ment protein in CSF. J Neurochem 1996; 67: 2013–2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.