47
Views
1
CrossRef citations to date
0
Altmetric
Article

Selective vulnerability in amyotrophic lateral sclerosis: no evidence for a contribution of annexins, a family of calcium binding proteins

, , , &
Pages 180-187 | Published online: 10 Jul 2009

References

  • Mitsumoto H, Chad DA, Pioro EP, editors. Amyotrophic Lateral Sclerosis. Philadelphia: FA Davies Company, 1998.
  • Ince P, Stout N, Shaw P et al. Parvalbumin and calbindin D-28K in the human motor system and in motor neuron disease. Neuropathol Appl Neurobiol 1993; 19: 291–299.
  • Alexianu ME, Ho B-K, Mohamed AH, La Bella V, Smith RG, Appel SH. The role of calcium-binding proteins in selective motor neuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1994; 36: 846–858.
  • Raynal P, Pollard HB. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochem Biophys Acta 1994; 1197: 63–93.
  • Baimbridge KG, Celio MR, Rogers JH. Calcium binding proteins in the nervous system. TINS 1992; 15: 303–308.
  • Black MD, Carey F, Crossman AR, Relton JK, Rothwell NJ. Lipocortin-1 inhibits NMDA receptor-mediated neuronal damage in the striatum of the rat. Brain Res 1992; 585: 135–140.
  • Naciff JM, Kaetzel MA, Behbehani MM, Dedman JR. Differential expression of annexins I-VI in the rat dorsal root ganglia and spinal cord. J Comp Neurol 1996; 368: 356–370.
  • Dreier R, Schmid KW, Gerke V, Riehemann K. Differential expression of annexins I, II and IV in human tissues: an immunohistochemical study. Histochem Cell Biol 1998; 110: 137–148.
  • Eberhard DA, Brown MD, VandenBerg SR. Alterations of annexin expression in pathological neuronal and glial reactions. Immunohistochemical localization of annexins I, II (p36 and p11 subunits), IV, and VI in the human hippocampus. Am J Pathol 1994; 145: 640–649.
  • Selbert S, Fischer P, Menke A, Jockusch H, Pongratz D, Noegel AA. Annexin VII relocalization as a result of dystrophin deficiency. Exp Cell Res 1996; 222: 199–208.
  • Wulfkuhle JD, Sgroi DC, Krutzsch H et al. Proteomics of human breast ductal carcinoma in situ. Cancer Res 2002; 62: 6740–6749.
  • Hansen MDH, Ehrlich JS, Nelson WJ. Molecular mechanism for orienting membrane and actin dynamics to nascent cell-cell contacts in epithelial cells. J Biol Chem 2002; 277: 45371–45376.
  • Babiychuk EB, Palstra RJ, Schaller J, Kampfer U, Draeger A. Annexin VI participates in the formation of a reversible, membrane-cytoskeleton complex in smooth muscle cells. J Biol Chem 1999; 274: 35191–35195.
  • Matteo RG, Moravec CS. Immunolocalization of annexins IV, V and VI in the failing and non-failing human heart. Cardiovasc Res 2000; 45: 961–970.
  • Bergmann M. Motor neuron disease/amyotrophic lateral sclero- sis: lessons from ubiquitin. Path Res Pract 1993; 189: 902–912.
  • Bergmann M, Vo¨ lpel M, Kuchelmeister K. Onuf ’s nucleus is frequently involved in motor neuron disease/amyotrophic lateral sclerosis. J Neurol Sci 1995; 129: 141–146.
  • Celio MR, Heizmann CW. Calcium-binding protein parvalbumin as a neuronal marker. Nature 1981; 293: 300–302.
  • Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 1990; 11: 379–387.
  • Mannen T, Iwata M, Toyokura Y, Nagashima K. Preservation of a certain motor neuron group of the sacral cord in amyotrophic lateral sclerosis: its clinical significance. J Neurol Neurosurg Psych 1977; 40: 464–469.
  • Iwata M, Inoue K, Mannen T. Functional localization in the Onufrowicz nucleus in man. Clin Neuropathol 1993; 12: 112–116.
  • Konno H, Yamamoto T, Iwasaki Y, Iizuka H. Shy-Drager syndrome and amyotrophic lateral sclerosis. Cytoarchitectonic and morphometric studies of sacral autonomic neurons. J Neurol Sci 1986; 73: 193–204.
  • Onufrowicz B. The arrangement and function of the cell groups of the sacral region of the spinal cord in man. Arch Neurol Psychopathol 1900; 3: 387–412.
  • Carpenter MB, Sutin J, editors. Human Neuroanatomy. Baltimore: Williams and Wilkins, 1983.
  • Okamoto K, Hirai S, Amari M et al. Oculomotor nuclear pathology in amyotrophic lateral sclerosis. Acta Neuropathol 1993; 85: 458–462.
  • Holstege G, Tan J. Supraspinal control on motor neuron innervating the striated muscles of pelvic floor including urethral and anal sphincters in the cat. Brain 1987; 110: 1323–1344.
  • Migheli A, Piva R, Atzori C, Troost D, Schiffer D. c-Jun, JNK/ SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 1997; 56: 1314–1322.
  • Iglesias JM, Morgan RO, Jenkins NA, Copeland NG, Gilbert DJ, Fernandez MP. Comparative genetics and evolution of annexin A13 as the founder of vertebrate annexins. Mol Biol Evol 2002; 19: 608–618.
  • Morgan RO, Jenkins NA, Gilbert DJ et al. Novel human and mouse annexin A10 are linked to the genome duplications during early chordate evolution. Genomics 1999; 60: 40–49.
  • Dubois T, Oudinet JP, Mira JP, Russo Marie F. Annexins and protein kinases C. Biochem Biophys Acta 1996; 1313: 290–294.
  • Rhee HJ, Kim GY, Huh JW, Kim SW, Na DS. Annexin I is a stress protein induced by heat, oxidative stress and a sulfhydryl-reactive agent. Eur J Biochem 2000; 267: 3220–3225.
  • Do¨ ring V, Veretout F, Albrecht R et al. The in vivo role of annexin VII (synexin): characterization of an annexin VII-deficient Dictyostelium mutant indicates an involvement in Ca2z regulated processes. J Cell Sci 1995; 108: 2065–2076.
  • Herr C, Smyth N, Ullrich S et al. Loss of annexin A7 leads to alterations in frequency-induced shortening of isolated murine cardiomyocytes. Mol Cell Biol 2001; 21: 4119–4128.
  • Johnson MD, Kamso-Pratt J, Whetsell WO, Pepinsky RB. Lipocortin-1 immunoreactivity in the normal human central nervous system and lesions with astrocytosis. Am J Clin Pathol 1989; 92: 424–429.
  • Probst-Cousin S, Kowolik D, Kuchelmeister K, Kayser C, Neundo¨ rfer B, Heuss D. Expression of annexin-1 in multiple sclerosis plaques. Neuropathol Appl Neurobiol 2002; 28: 292–300.
  • Flower RJ. Lipocortin and the mechanisms of action of the glucocorticoids. Br J Pharmacol 1988; 94: 987–1015.
  • Goulding NJ, Guyre PM. Glucocorticoids, lipocortins and the immune response. Curr Opin Immunol 1993; 5: 108–113.
  • Johnson MD, Kamso-Pratt J, Pepinsky RB, Whetsell WO. Lipocortin-1 immunoreactivity in central and peripheral nervous system glial tumours. Hum Pathol 1989; 20: 772–776.
  • Flower RJ, Rothwell NJ. Lipocortin-1: cellular mechanisms and clinical relevance. Trends Pharmacol Sci 1994; 15: 71–76.
  • Relton JK, Strijbos PJ, O’Shaughnessy CT et al. Lipocortin-1 is an endogenous inhibitor of ischaemic damage in the rat brain. J Exp Med 1991; 174: 305–310.
  • Nilius B, Gerke V, Prenen J et al. Annexin II modulates volume- activated chloride currents in vascular endothelial cells. J Biol Chem 1996; 271: 30613–30616.
  • Redlitz A, Plow EF. Receptors for plasminogen and t-PA: an update. Baillieres Clin Haematol 1995; 8: 313–327.
  • Greenberg ME, Brackenbury R, Edelmann GM. Changes in the distribution of the 34-kdalton tyrosine kinase substrate during differentiation and maturation of chicken tissues. J Cell Biol 1984; 98: 9473–9486.
  • Chan HC, Kaetzel MA, Gotter AL, Dedman JR, Nelson DJ. Annexin IV inhibits calmodulin-dependent protein kinase II- activated chloride conductance. A novel mechanism for ion channel regulation. J Biol Chem 1994; 269: 32464–32468.
  • Kaetzel MA, Chan HC, Dubinsky WP, Dedman JR, Nelson DJ. A role for annexin IV in epithelial cell function. Inhibition of calcium-activated chloride conductance. J Biol Chem 1994; 269: 5297–5302.
  • Weinman JS, Feinberg JM, Rainteau DP, Gaspera BD, Weinman SJ. Annexins in rat enterocyte and hepatocyte: an immunogold electron-microscope study. Cell Tissue Res 1994; 278: 389–397.
  • Hamre KM, Chepenik KP, Goldowitz D. The annexins: specific markers of midline structures and sensory neurons in the developing murine central nervous system. J Comp Neurol 1995; 352: 421–435.
  • van-Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine expo- sure. Cytometry 1998; 31: 1–9.
  • Zhang G, Gurtu V, Kain SR, Yan G. Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 1997; 23: 525–531.
  • Mollenhauer J, Mok MT, King KB et al. Expression of anchorin CII (cartilage annexin V) in human young, normal adult, and osteoarthritic cartilage. J Histochem Cytochem 1999; 47: 209–220.
  • Kawaminami M, Kawamoto T, Tanabe T et al. Immunocyto- chemical localization of annexin V, a calcium-dependent phospholipid-binding protein, in rat endocrine organs. Cell Tissue Res 1998; 292: 85–89.
  • Gotow T, Sakata M, Funakoshi T, Uchiyama Y. Preferential localization of annexin V to the axon terminal. Neuroscience 1996; 75: 507–521.
  • Spreca A, Rambotti MG, Giambanco I et al. Immunocytochem- ical localization of annexin V (CaBP33), a Ca2z-dependent phospholipid- and membrane-binding protein, in the rat nervous system and skeletal muscles in the porcine heart. J Cell Physiol 1992; 152: 587–598.
  • Sun J, Salem HH, Bird P. Nucleolar and cytoplasmic localization of annexin V. FEBS Lett 1992; 314: 425–429.
  • Barwise JL, Walker JH. Subcellular localization of annexin V in human foreskin fibroblasts: nuclear localization depends on growth state. FEBS Lett 1996; 394: 213–216.
  • Jans SW, de Jong YF, Reutelingsperger CP, van der Vusse GJ, van Bilsen M. Differential expression and localization of annexin V in cardiac myocytes during growth and hypertrophy. Mol Cell Biochem 1998; 178: 229–236.
  • Arcuri C, Giambanco I, Bianchi R, Donato R. Annexin V, annexin VI, S100A1 and S100B in developing and adult avian skeletal muscles. Neuroscience 2002; 109: 371–388.
  • van den Eijnde SM, van den Hoff MJ, Reutelingsperger CP et al. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J Cell Sci 2001; 114: 3631–3642.
  • Dubois T, Oudinet JP, Russo-Marie F, Rothhut B. In vivo and in vitro phosphorylation of annexin II in T-cells: potential regulation by annexin V. Biochem J 1995; 310: 243–248.
  • Romisch J, Schorlemmer U, Fickenscher K, Paques EP, Heimburger N. Anticoagulant properties of placenta protein 4 (annexin V). Thromb Res 1990; 60: 355–366.
  • Takei N, Ohsawa K, Imai Y, Nakao H, Iwasaki A, Kohsaka S. Neurotrophic effects of annexin V on cultured neurons from embryonic rat brain. Neurosci Lett 1994; 171: 59–62.
  • Clark DM, Moss SE, Wright NA, Crumpton MJ. Expression of annexin VI (p68, 67 kDa-calelectrin) in normal human tissues: evidence for developmental regulation in B- and T-lymphocytes. Histochemistry 1991; 96: 405–412.
  • Diaz-Munoz M, Hamilton S, Kaetzel MA, Hazarika P, Dedman JR. Modulation of Ca2z release channel activity from sarco- plasmic reticulum by annexin VI (67-kDa calcimedin). J BiolChem 1990; 265: 15894–15899.
  • Sorrentino V, Volpe P. Ryanodine receptors: how many, where, and why? Trends Pharmacol Sci 1993; 14: 98–103.
  • Srivastava M, Pollard HB. Low in vivo levels of human annexin VII gene expression are due to endogenous inhibitory promoter sequences. Cell Biol Int 2000; 24: 474–481.
  • Ernst JD, Meers P, Hong K, Duzgunes N, Papahadjopoulos D, Goldstein IM. Human polymorphonuclear leukocytes contain synexin, a calcium-binding protein that mediates membrane fusion. Trans Assoc Am Phys 1986; 99: 58–66.
  • Pollard HB, Burns AL, Rojas E. A molecular basis for synexin- driven, calcium-dependent membrane fusion. J Exp Biol 1988; 139: 267–286.
  • Pollard HB, Burns AL, Rojas E. Synexin, a new member of the annexin gene family, is a calcium channel and a membrane fusion protein. Prog Clin Biol Res 1990; 349: 159–172.
  • Pollard HB, Rojas E, Burns AL. Synexin (annexin VII) and membrane fusion during the process of exocytotic secretion. Prog Brain Res 1992; 92: 247–255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.