568
Views
19
CrossRef citations to date
0
Altmetric
Review

Translational development of splice-modifying antisense oligomers

, , , &
Pages 15-30 | Received 28 Jul 2016, Accepted 17 Oct 2016, Published online: 02 Nov 2016

References

  • Guncay A, Yokota T. Antisense oligonucleotide drugs for Duchenne muscular dystrophy: how far have we come and what does the future hold? Future Med Chem. 2015;7:1631–1635. DOI:10.4155/fmc.15.116
  • Yu X, Bao B, Echigoya Y, et al. Dystrophin-deficient large animal models: translational research and exon skipping. Am J Transl Res. 2015;7:1314–1331.
  • Matsuo M, Takeshima Y, Nishio H. Contributions of Japanese patients to development of antisense therapy for DMD. Brain Dev. 2016;38:4–9. DOI:10.1016/j.braindev.2015.05.014
  • Lorson CL, Hahnen E, Androphy EJ, et al. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A. 1999;96:6307–6311.
  • Singh NK, Singh NN, Androphy EJ, et al. Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol. 2006;26:1333–1346. DOI:10.1128/MCB.26.4.1333-1346.2006
  • Pramono ZA, Takeshima Y, Alimsardjono H, et al. Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynucleotide complementary to an exon recognition sequence. Biochem Biophys Res Commun. 1996;226:445–449.
  • Wilton SD, Lloyd F, Carville K, et al. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul Disord. 1999;9:330–338.
  • Dunckley MG, Manoharan M, Villiet P, et al. Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet. 1998;7:1083–1090.
  • Aartsma-Rus A, Janson AA, Kaman WE, et al. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet. 2003;12:907–914.
  • Mann CJ, Honeyman K, Cheng AJ, et al. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc Natl Acad Sci U S A. 2001;98:42–47. DOI:10.1073/pnas.011408598
  • Matsuo M, Takeshima Y. Rescue of dystrophin mRNA of Duchenne muscular dystrophy by inducing exon skipping. Acta Myol. 2005;24:110–114.
  • T Hoen PA, van der Wees CG, Aartsma-Rus A, et al. Gene expression profiling to monitor therapeutic and adverse effects of antisense therapies for Duchenne muscular dystrophy. Pharmacogenomics. 2006;7:281–297. DOI:10.2217/14622416.7.3.281
  • Yokota T, Lu QL, Partridge T, et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol. 2009;65:667–676. DOI:10.1002/ana.21627
  • Takeshima Y, Yagi M, Wada H, et al. Intravenous infusion of an antisense oligonucleotide results in exon skipping in muscle dystrophin mRNA of Duchenne muscular dystrophy. Pediatr Res. 2006;59:690–694. DOI:10.1203/01.pdr.0000215047.51278.7c
  • Wilton SD, Fall AM, Harding PL, et al. Antisense oligonucleotide-induced exon skipping across the human Dystrophin gene transcript. Mol Ther. 2007;15:1288–1296. DOI:10.1038/sj.mt.6300095
  • Potaczek DP, Garn H, Unger SD, et al. Antisense molecules: a new class of drugs. J Allergy Clin Immunol. 2016;137:1334–1346. DOI:10.1016/j.jaci.2015.12.1344
  • Takeda J, Suzuki Y, Nakao M, et al. Large-scale identification and characterization of alternative splicing variants of human gene transcripts using 56,419 completely sequenced and manually annotated full-length cDNAs. Nucleic Acids Res. 2006;34:3917–3928. DOI:10.1093/nar/gkl507
  • Lee Y, Rio DC. Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem. 2015;84:291–323. DOI:10.1146/annurev-biochem-060614-034316
  • Fletcher S, Adams AM, Johnsen RD, et al. Dystrophin isoform induction in vivo by antisense-mediated alternative splicing. Mol Ther. 2010;18:1218–1223. DOI:10.1038/mt.2010.45
  • Lim SR, Hertel KJ. Modulation of survival motor neuron pre-mRNA splicing by inhibition of alternative 3ʹ splice site pairing. J Biol Chem. 2001;276:45476–45483. DOI:10.1074/jbc.M107632200
  • Sterne-Weiler T, Sanford JR. Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol. 2014;15:201. DOI:10.1186/gb4150
  • Wein N, Vulin A, Falzarano MS, et al. Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nat Med. 2014;20:992–1000. DOI:10.1038/nm.3628
  • Takeshima Y, Yagi M, Wada H, et al. Intraperitoneal administration of phosphorothioate antisense oligodeoxynucleotide against splicing enhancer sequence induced exon skipping in dystrophin mRNA expressed in mdx skeletal muscle. Brain Dev. 2005;27:488–493. DOI:10.1016/j.braindev.2004.12.006
  • Van Deutekom JC, Bremmer-Bout M, Janson AA, et al. Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum Mol Genet. 2001;10:1547–1554.
  • Aartsma-Rus A. Antisense-mediated modulation of splicing: therapeutic implications for duchenne muscular dystrophy. RNA Biol. 2010;7:453–461.
  • Touznik A, Lee JJ, Yokota T. New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opin Biol Ther. 2014;14:809–819. DOI:10.1517/14712598.2014.896335
  • Wood MJ, Gait MJ, Yin H. RNA-targeted splice-correction therapy for neuromuscular disease. Brain. 2010;133:957–972. DOI:10.1093/brain/awq002
  • Mitrpant C, Adams AM, Meloni PL, et al. Rational design of antisense oligomers to induce dystrophin exon skipping. Mol Ther. 2009;17:1418–1426. DOI:10.1038/mt.2009.49
  • T Hoen PA, De Meijer EJ, Boer JM, et al. Generation and characterization of transgenic mice with the full-length human DMD gene. J Biol Chem. 2008;283:5899–5907. DOI:10.1074/jbc.M709410200
  • Heemskerk HA, De Winter CL, De Kimpe SJ, et al. In vivo comparison of 2ʹ-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med. 2009;11:257–266. DOI:10.1002/jgm.1288
  • Mendell JR, Goemans N, Lowes LP, et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol. 2016;79:257–271. DOI:10.1002/ana.24555
  • Mendell JR, Rodino-Klapac LR, Sahenk Z, et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol. 2013;74:637–647. DOI:10.1002/ana.23982
  • Vanderplanck C, Ansseau E, Charron S, et al. The FSHD atrophic myotube phenotype is caused by DUX4 expression. PLoS One. 2011;6:e26820. DOI:10.1371/journal.pone.0026820
  • Monaco AP, Bertelson CJ, Liechti-Gallati S, et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988;2:90–95.
  • Nicholson LV. The “rescue” of dystrophin synthesis in boys with Duchenne muscular dystrophy. Neuromuscul Disord. 1993;3:525–531.
  • Nicholson LV, Bushby KM, Johnson MA, et al. Predicted and observed sizes of dystrophin in some patients with gene deletions that disrupt the open reading frame. J Med Genet. 1992;29:892–896.
  • Lu QL, Morris GE, Wilton SD, et al. Massive idiosyncratic exon skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant fibers by clonal expansion. J Cell Biol. 2000;148:985–996.
  • Sherratt TG, Vulliamy T, Dubowitz V, et al. Exon skipping and translation in patients with frameshift deletions in the dystrophin gene. Am J Hum Genet. 1993;53:1007–1015.
  • Bulfield G, Siller WG, Wight PA, et al. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A. 1984;81:1189–1192.
  • Summerton JE. Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr Top Med Chem. 2007;7:651–660.
  • Van Deutekom JC, Janson AA, Ginjaar IB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007;357:2677–2686. DOI:10.1056/NEJMoa073108
  • Eagle M, Baudouin SV, Chandler C, et al. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord. 2002;12:926–929.
  • Flanigan KM, Ceco E, Lamar KM, et al. LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Ann Neurol. 2013;73:481–488. DOI:10.1002/ana.23819
  • Bello L, Morgenroth LP, Gordish-Dressman H, et al. DMD genotypes and loss of ambulation in the CINRG Duchenne natural history study. Neurology. 2016;87:401–409. DOI:10.1212/WNL.0000000000002891
  • Gebski BL, Mann CJ, Fletcher S, et al. Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle. Hum Mol Genet. 2003;12:1801–1811.
  • Jirka SM, Tanganyika-de Winter CL, Boertje-van der Meulen JW, et al. Evaluation of 2ʹ-deoxy-2ʹ-fluoro antisense oligonucleotides for exon skipping in Duchenne muscular dystrophy. Mol Ther Nucleic Acids. 2015;4:e265. DOI:10.1038/mtna.2015.39
  • Alter J, Lou F, Rabinowitz A, et al. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med. 2006;12:175–177. DOI:10.1038/nm1345
  • Fletcher S, Honeyman K, Fall AM, et al. Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J Gene Med. 2006;8:207–216. DOI:10.1002/jgm.838
  • Heemskerk H, De Winter CL, van Ommen GJ, et al. Development of antisense-mediated exon skipping as a treatment for duchenne muscular dystrophy. Ann N Y Acad Sci. 2009;1175:71–79. DOI:10.1111/j.1749-6632.2009.04973.x
  • Wang M, Wu B, Lu P, et al. Pluronic-PEI copolymers enhance exon-skipping of 2ʹ-O-methyl phosphorothioate oligonucleotide in cell culture and dystrophic mdx mice. Gene Ther. 2014;21:52–59. DOI:10.1038/gt.2013.57
  • Rimessi P, Sabatelli P, Fabris M, et al. Cationic PMMA nanoparticles bind and deliver antisense oligoribonucleotides allowing restoration of dystrophin expression in the mdx mouse. Mol Ther. 2009;17:820–827. DOI:10.1038/mt.2009.8
  • Fletcher S, Honeyman K, Fall AM, et al. Morpholino oligomer-mediated exon skipping averts the onset of Dystrophic pathology in the mdx mouse. Mol Ther. 2007;15:1587–1592. DOI:10.1038/sj.mt.6300245
  • Ivanova GD, Arzumanov A, Abes R, et al. Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Res. 2008;36:6418–6428. DOI:10.1093/nar/gkn671
  • Seow Y, Yin H, Wood MJ. Identification of a novel muscle targeting peptide in mdx mice. Peptides. 2010;31:1873–1877. DOI:10.1016/j.peptides.2010.06.036
  • Yin H, Boisguerin P, Moulton HM, et al. Context dependent effects of chimeric peptide morpholino conjugates contribute to Dystrophin exon-skipping efficiency. Mol Ther Nucleic Acids. 2013;2:e124. DOI:10.1038/mtna.2013.51
  • Shen W, Liang XH, Sun H, et al. 2ʹ-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Res. 2015;43:4569–4578. DOI:10.1093/nar/gkv298
  • Frazier KS, Sobry C, Derr V, et al. Species-specific inflammatory responses as a primary component for the development of glomerular lesions in mice and monkeys following chronic administration of a second-generation antisense oligonucleotide. Toxicol Pathol. 2013;42:923–935. DOI:10.1177/0192623313505781
  • Sharma VK, Watts JK. Oligonucleotide therapeutics: chemistry, delivery and clinical progress. Future Med Chem. 2015;7:2221–2242. DOI:10.4155/fmc.15.144
  • Saleh AF, Arzumanov AA, Gait MJ. Overview of alternative oligonucleotide chemistries for exon skipping. Methods Mol Biol. 2012;867:365–378. DOI:10.1007/978-1-61779-767-5_23
  • Goemans NM, Tulinius M, van den Akker JT, et al. Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med. 2011;364:1513–1522. DOI:10.1056/NEJMoa1011367
  • Voit T, Topaloglu H, Straub V, et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol. 2014;13:987–996. DOI:10.1016/S1474-4422(14)70195-4
  • Hoffman EP, Connor EM. Orphan drug development in muscular dystrophy: update on two large clinical trials of dystrophin rescue therapies. Discov Med. 2013;16:233–239.
  • Lu QL, Cirak S, Partridge T. What can we learn from clinical trials of exon skipping for DMD? Mol Ther Nucleic Acids. 2014;3:e152. DOI:10.1038/mtna.2014.6
  • Kinali M, Arechavala-Gomeza V, Feng L, et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 2009;8:918–928. DOI:10.1016/S1474-4422(09)70211-X
  • Cirak S, Arechavala-Gomeza V, Guglieri M, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet. 2011;378:595–605. DOI:10.1016/S0140-6736(11)60756-3
  • Hoffman EP, McNally EM. Exon-skipping therapy: a roadblock, detour, or bump in the road? Sci Transl Med. 2014;6:230fs14. DOI:10.1126/scitranslmed.3008873
  • Merlini L, Sabatelli P. Improving clinical trial design for Duchenne muscular dystrophy. BMC Neurol. 2015;15:153. DOI:10.1186/s12883-015-0408-z
  • Biomarin Update For The Duchenne Community. Cure Duchenne 2016 July 7. 2016. [cited 2016 Sept 16]. Available from: http://cureduchenne.com/blog/biomarin-update-for-the-duchenne-community-7th-july-2016/
  • Mendell JR, Goemans N, Lowes LP, et al. Longitudinal effect of eteplirsen vs. historical control on ambulation in DMD. Ann Neurol. 2016;79:257–271. DOI:10.1002/ana.24555
  • Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta. 1999;1489:141–158.
  • Iversen PL. Morpholino. In: Crooke ST, ed. Antisense drug technology: principles, strategies, and applications. 2nd edition ed. Taylor and Francis Group: Bosa Roca; 2007. p. 556–582.
  • Iversen PL, Aird KM, Wu R, et al. Cellular uptake of neutral phosphorodiamidate morpholino oligomers. Curr Pharm Biotechnol. 2009;10:579–588. DOI:10.2174/138920109789069279
  • Iversen PL, Arora V, Acker AJ, et al. Efficacy of antisense morpholino oligomer targeted to c-myc in prostate cancer xenograft murine model and a phase I safety study in humans. Clin Cancer Res. 2003;9:2510–2519.
  • Schmajuk G, Sierakowska H, Kole R. Antisense oligonucleotides with different backbones. Modification of splicing pathways and efficacy of uptake. J Biol Chem. 1999;274:21783–21789.
  • Le B T, Veedu RN, Fletcher S, et al. Antisense oligonucleotide development for the treatment of muscular dystrophies. Expert Opinion on Orphan Drugs. 2016;4:139–152. DOI:10.1517/21678707.2016.1122517
  • Miceli MC, Nelson SF. The case for eteplirsen: paving the way for precision medicine. Mol Genet Metab. 2016;118:70–71. DOI:10.1016/j.ymgme.2016.04.001
  • Cao L, Han G, Lin C, et al. Fructose promotes uptake and activity of oligonucleotides with different chemistries in a context-dependent manner in mdx mice. Mol Ther Nucleic Acids. 2016;5:e329. DOI:10.1038/mtna.2016.46
  • Han G, Gu B, Cao L, et al. Hexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice. Nat Commun. 2016;7:10981. DOI:10.1038/ncomms10981
  • Kendall GC, Mokhonova EI, Moran M, et al. Dantrolene enhances antisense-mediated exon skipping in human and mouse models of Duchenne muscular dystrophy. Sci Transl Med. 2012;4:164ra160–164ra160. DOI:10.1126/scitranslmed.3005054
  • FDA grants accelerated approval to first drug for Duchenne muscular dystrophy. FDA News Release 2016 09/19/2016. [cited 2016 Sep 20] Available from: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm521263.htm
  • Komaki H, Nagata T, Saito T, et al. Exon 53 skipping of the dystrophin gene in patients with Duchenne muscular dystrophy by systemic administration of NS-065/NCNP-01: a phase 1, dose escalation, first-in-human study. Neuromuscular Disord. 2015;25:SS261-SS262. DOI:10.1016/j.nmd.2015.06.276
  • McAndrew PE, Parsons DW, Simard LR, et al. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet. 1997;60:1411–1422. DOI:10.1086/515465
  • Pellizzoni L, Kataoka N, Charroux B, et al. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell. 1998;95:615–624.
  • Rochette CF, Gilbert N, Simard LR. SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. Hum Genet. 2001;108:255–266.
  • Cartegni L, Krainer AR. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet. 2002;30:377–384. DOI:10.1038/ng854
  • Kashima T, Manley JL. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet. 2003;34:460–463. DOI:10.1038/ng1207
  • Lorson CL, Strasswimmer J, Yao JM, et al. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet. 1998;19:63–66. DOI:10.1038/ng0598-63
  • Burnett BG, Munoz E, Tandon A, et al. Regulation of SMN protein stability. Mol Cell Biol. 2009;29:1107–1115. DOI:10.1128/MCB.01262-08
  • Monani UR, Lorson CL, Parsons DW, et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. 1999;8:1177–1183.
  • Lorson CL, Androphy EJ. An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet. 2000;9:259–265.
  • Lefebvre S, Burlet P, Liu Q, et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet. 1997;16:265–269. DOI:10.1038/ng0797-265
  • Crawford TO, Paushkin SV, Kobayashi DT, et al. Evaluation of SMN protein, transcript, and copy number in the biomarkers for spinal muscular atrophy (BforSMA) clinical study. PLoS One. 2012;7:e33572. DOI:10.1371/journal.pone.0033572
  • Lunn MR, Wang CH. Spinal muscular atrophy. Lancet. 2008;371:2120–2133. DOI:10.1016/S0140-6736(08)60921-6
  • Wirth B, Brichta L, Schrank B, et al. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet. 2006;119:422–428. DOI:10.1007/s00439-006-0156-7
  • Wirth B, Garbes L, Riessland M. How genetic modifiers influence the phenotype of spinal muscular atrophy and suggest future therapeutic approaches. Curr Opin Genet Dev. 2013;23:330–338. DOI:10.1016/j.gde.2013.03.003
  • Oprea GE, Krober S, McWhorter ML, et al. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science. 2008;320:524–527. DOI:10.1126/science.1155085
  • McGovern VL, Massoni-Laporte A, Wang X, et al. Plastin 3 expression does not modify spinal muscular atrophy severity in the 7 SMA mouse. PLoS One. 2015;10:e0132364. DOI:10.1371/journal.pone.0132364
  • Rigo F, Chun SJ, Norris DA, et al. Pharmacology of a central nervous system delivered 2ʹ-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther. 2014;350:46–55. DOI:10.1124/jpet.113.212407
  • Naryshkin NA, Weetall M, Dakka A, et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science. 2014;345:688–693. DOI:10.1126/science.1250127
  • Zhao X, Feng Z, Ling KK, et al. Pharmacokinetics, pharmacodynamics, and efficacy of a small-molecule SMN2 splicing modifier in mouse models of spinal muscular atrophy. Hum Mol Genet. 2016;25:1885–1899. DOI:10.1093/hmg/ddw062
  • Porensky PN, Mitrpant C, McGovern VL, et al. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet. 2012;21:1625–1638. DOI:10.1093/hmg/ddr600
  • Seo J, Howell MD, Singh NN, et al. Spinal muscular atrophy: an update on therapeutic progress. Biochim Biophys Acta. 2013;1832:2180–2190. DOI:10.1016/j.bbadis.2013.08.005
  • Passini MA, Bu J, Richards AM, et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. 2011;3:72ra18. DOI:10.1126/scitranslmed.3001777
  • Hua Y, Sahashi K, Rigo F, et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature. 2011;478:123–126. DOI:10.1038/nature10485
  • Zhou H, Janghra N, Mitrpant C, et al. A novel morpholino oligomer targeting iss-n1 improves rescue of severe sma transgenic mice. Hum Gene Ther. 2013;24:331–342. DOI:10.1089/hum.2012.211
  • Hammond SM, Hazell G, Shabanpoor F, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci. 2016;113:10962–10967. DOI:10.1073/pnas.1605731113
  • Biogen and ionis pharmaceuticals report nusinersen meets primary endpoint at interim analysis of phase 3 endear study in infantile-onset spinal muscular atrophy. 2016; [cited 2-16 Sept 15]. Available from: http://ir.ionispharma.com/phoenix.zhtml?c=222170&p=irol-newsArticle&ID=2191319
  • Palacino J, Swalley SE, Song C, et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat Chem Biol. 2015;11:511–517. DOI:10.1038/nchembio.1837
  • Miyajima H, Miyaso H, Okumura M, et al. Identification of a cis-acting element for the regulation of SMN exon 7 splicing. J Biol Chem. 2002;277:23271–23277. DOI:10.1074/jbc.M200851200
  • Hua Y, Vickers TA, Okunola HL, et al. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet. 2008;82:834–848. DOI:10.1016/j.ajhg.2008.01.014
  • Miyaso H, Okumura M, Kondo S, et al. An intronic splicing enhancer element in survival motor neuron (SMN) pre-mRNA. J Biol Chem. 2003;278:15825–15831. DOI:10.1074/jbc.M209271200
  • Kashima T, Rao N, Manley JL. An intronic element contributes to splicing repression in spinal muscular atrophy. Proc Natl Acad Sci U S A. 2007;104:3426–3431. DOI:10.1073/pnas.0700343104
  • Singh NN, Lawler MN, Ottesen EW, et al. An intronic structure enabled by a long-distance interaction serves as a novel target for splicing correction in spinal muscular atrophy. Nucleic Acids Res. 2013;41:8144–8165. DOI:10.1093/nar/gkt609
  • Skordis LA, Dunckley MG, Yue B, et al. Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc Natl Acad Sci U S A. 2003;100:4114–4119. DOI:10.1073/pnas.0633863100
  • Osman EY, Miller MR, Robbins KL, et al. Morpholino antisense oligonucleotides targeting intronic repressor element1 improve phenotype in SMA mouse models. Hum Mol Genet. 2014;23:4832–4845. DOI:10.1093/hmg/ddu198
  • Le TT, Pham LT, Butchbach ME, et al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet. 2005;14:845–857. DOI:10.1093/hmg/ddi078
  • Meyer K, Ferraiuolo L, Schmelzer L, et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose–response study in mice and nonhuman primates. Mol Ther. 2015;23:477–487. DOI:10.1038/mt.2014.210
  • Bushby K, Bourke J, Bullock R, et al. The multidisciplinary management of Duchenne muscular dystrophy. Curr Paediatrics. 2005;15:292–300. DOI:10.1016/j.cupe.2005.04.001
  • Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9:77–93. DOI:10.1016/S1474-4422(09)70271-6
  • Kesselheim AS, Gagne JJ. Strategies for postmarketing surveillance of drugs for rare diseases. Clin Pharmacol Ther. 2014;95:265–268. DOI:10.1038/clpt.2013.218
  • van den Bergen JC, Schade van Westrum SM, Dekker L, et al. Clinical characterisation of Becker muscular dystrophy patients predicts favourable outcome in exon-skipping therapy. J Neurol Neurosurg Psychiatry. 2014;85:92–98. DOI:10.1136/jnnp-2012-304729
  • Wilton SD, Fletcher S, Flanigan KM. Dystrophin as a therapeutic biomarker: are we ignoring data from the past? Neuromuscul Disord. 2014;24:463–466. DOI:10.1016/j.nmd.2014.03.007
  • Wilton SD, Veedu RN, Fletcher S. The emperor’s new dystrophin: finding sense in the noise. Trends Mol Med. 2015;21:417–426. DOI:10.1016/j.molmed.2015.04.006
  • Wu B, Lu P, Benrashid E, et al. Dose-dependent restoration of dystrophin expression in cardiac muscle of dystrophic mice by systemically delivered morpholino. Gene Ther. 2010;17:132–140. DOI:10.1038/gt.2009.120
  • Greer K, Mizzi K, Rice E, et al. Pseudoexon activation increases phenotype severity in a Becker muscular dystrophy patient. Mol Genet Genomic Med. 2015;3:320–326. DOI:10.1002/mgg3.144
  • Flanigan KM, Dunn DM, Von Niederhausern A, et al. Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene. Hum Mutat. 2011;32:299–308. DOI:10.1002/humu.21426
  • Gurvich OL, Tuohy TM, Howard MT, et al. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy. Ann Neurol. 2008;63:81–89. DOI:10.1002/ana.21290
  • Pane M, Mazzone ES, Sivo S, et al. Long term natural history data in ambulant boys with Duchenne muscular dystrophy: 36-month changes. PLoS One. 2014;9:e108205. DOI:10.1371/journal.pone.0108205
  • Mercuri E, Coratti G, Messina S, et al. Revised north star ambulatory assessment for young boys with Duchenne muscular dystrophy. PLoS One. 2016;11:e0160195. DOI:10.1371/journal.pone.0160195
  • Mercuri E, Signorovitch JE, Swallow E, et al. Categorizing natural history trajectories of ambulatory function measured by the 6-minute walk distance in patients with Duchenne muscular dystrophy. Neuromuscul Disord. 2016;26:576–583. DOI:10.1016/j.nmd.2016.05.016
  • Ricotti V, Ridout DA, Pane M, et al. The NorthStar ambulatory assessment in Duchenne muscular dystrophy: considerations for the design of clinical trials. J Neurol Neurosurg Psychiatry. 2016;87:149–155. DOI:10.1136/jnnp-2014-309405
  • Mayhew AG, Cano SJ, Scott E, et al. Detecting meaningful change using the North star ambulatory assessment in Duchenne muscular dystrophy. Dev Med Child Neurol. 2013;55:1046–1052. DOI:10.1111/dmcn.12220
  • Bello L, Campadello P, Barp A, et al. Functional changes in Becker muscular dystrophy: implications for clinical trials in dystrophinopathies. Sci Rep. 2016;6:32439. DOI:10.1038/srep32439
  • Gupta S, Faughnan ME, Tomlinson GA, et al. A framework for applying unfamiliar trial designs in studies of rare diseases. J Clin Epidemiol. 2011;64:1085–1094. DOI:10.1016/j.jclinepi.2010.12.019
  • van der Ploeg AT, Clemens PR, Corzo D, et al. A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med. 2010;362:1396–1406. DOI:10.1056/NEJMoa0909859
  • Baiardi P, Giaquinto C, Girotto S, et al. Innovative study design for paediatric clinical trials. Eur J Clin Pharmacol. 2011;67(Suppl 1):109–115. DOI:10.1007/s00228-011-0990-y
  • Bladen CL, Salgado D, Monges S, et al. The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat. 2015;36:395–402. DOI:10.1002/humu.22758
  • Lynn S, Aartsma-Rus A, Bushby K, et al. Measuring clinical effectiveness of medicinal products for the treatment of Duchenne muscular dystrophy. Neuromuscul Disord. 2015;25:96–105. DOI:10.1016/j.nmd.2014.09.003
  • Straub V, Balabanov P, Bushby K, et al. Stakeholder cooperation to overcome challenges in orphan medicine development: the example of Duchenne muscular dystrophy. Lancet Neurol. 2016;15:882–890. DOI:10.1016/S1474-4422(16)30035-7
  • MDCC Action Plan for the Muscular Dystrophies 2005. 2005. [cited 2016 Sept 13] Available from: http://www.ninds.nih.gov/about_ninds/groups/mdcc/MDCC_Action_Plan.pdf
  • 2015 MDCC Action Plan for the Muscular Dystrophies. 2015. [cited 2016 Sept 13]. Available from: https://mdcc.nih.gov/action_plan/2015-action-Plan-to-MDCC-508comp.pdf
  • Aartsma-Rus A, Ferlini A, Vroom E. Biomarkers and surrogate endpoints in Duchenne: meeting report. Neuromuscul Disord. 2014;24:743–745. DOI:10.1016/j.nmd.2014.03.006
  • TREAT-NMD Neuromuscular Network. [cited 2016 Sept 12]. Available from: http://www.treat-nmd.eu/sma/overview/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.