4,244
Views
23
CrossRef citations to date
0
Altmetric
Review

The importance of correctly timing cancer immunotherapy

, , &
Pages 87-103 | Received 23 May 2016, Accepted 31 Oct 2016, Published online: 16 Nov 2016

References

  • Melief CJ, van Hall T, Arens R, et al. Therapeutic cancer vaccines. J Clin Invest. 2015;125:3401–3412. DOI:10.1172/JCI80009
  • van der Burg SH, Arens R, Ossendorp F, et al. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16:219–233. DOI:10.1038/nrc.2016.16 .
  • Kenter GG, Welters MJ, Valentijn AR, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 2009;361:1838–1847. DOI:10.1056/NEJMoa0810097
  • van Poelgeest MI, Welters MJ, van Esch EM, et al. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J Transl Med. 2013;11:88. DOI:10.1186/1479-5876-11-88
  • Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–422. DOI:10.1056/NEJMoa1001294
  • Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17:4550–4557. DOI:10.1158/1078-0432.CCR-11-0116
  • Verdegaal EM. Adoptive cell therapy: a highly successful individualized therapy for melanoma with great potential for other malignancies. Curr Opin Immunol. 2016;39:90–95. DOI:10.1016/j.coi.2016.01.004
  • Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–723. DOI:10.1056/NEJMoa1003466
  • Ribas A, Kefford R, Marshall MA, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31:616–622. DOI:10.1200/JCO.2012.44.6112
  • Homet MB, Parisi G, Robert L, et al. Anti-PD-1 therapy in melanoma. Semin Oncol. 2015;42:466–473. DOI:10.1053/j.seminoncol.2015.02.008
  • Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015;372:2521–2532. DOI:10.1056/NEJMoa1503093
  • Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–2454. DOI:10.1056/NEJMoa1200690
  • Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–133. DOI:10.1056/NEJMoa1302369
  • Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–2465. DOI:10.1056/NEJMoa1200694
  • Forde PM, Reiss KA, Zeidan AM, et al. What lies within: novel strategies in immunotherapy for non-small cell lung cancer. Oncologist. 2013;18:1203–1213. DOI:10.1634/theoncologist.2013-0171
  • Garon EB. Current Perspectives in Immunotherapy for Non-Small Cell Lung Cancer. Semin Oncol. 2015;42(Suppl 2):S11–S8. DOI:10.1053/j.seminoncol.2015.09.019
  • Lipson EJ, Forde PM, Hammers HJ, et al. Antagonists of PD-1 and PD-L1 in Cancer Treatment. Semin Oncol. 2015;42:587–600. DOI:10.1053/j.seminoncol.2015.05.013
  • Hughes PE, Caenepeel S, Wu LC. Targeted Therapy and Checkpoint Immunotherapy Combinations for the Treatment of Cancer. Trends Immunol. 2016;37:462–476. DOI:10.1016/j.it.2016.04.010
  • Chiappinelli KB, Zahnow CA, Ahuja N, et al. Combining Epigenetic and Immunotherapy to Combat Cancer. Cancer Res. 2016;76:1683–1689. DOI:10.1158/0008-5472.CAN-15-2125
  • Saleh MH, Wang L, Goldberg MS. Improving cancer immunotherapy with DNA methyltransferase inhibitors. Cancer Immunol Immunother. 2016;65:787–796. DOI:10.1007/s00262-015-1776-3
  • Arina A, Corrales L, Bronte V. Enhancing T-cell therapy by overcoming the immunosuppressive tumor microenvironment. Semin Immunol. 2016;28:54–63. DOI:10.1016/j.smim.2016.01.002
  • Wolchok JD, Hoos A, O’Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–7420. DOI:10.1158/1078-0432.CCR-09-1624
  • van der Burg SH. Therapeutic vaccines in cancer: moving from immunomonitoring to immunoguiding. Expert Rev Vaccines. 2008;7:1–5. DOI:10.1586/14760584.7.1.1
  • Berraondo P, Nouze C, Preville X, et al. Eradication of large tumors in mice by a tritherapy targeting the innate, adaptive, and regulatory components of the immune system. Cancer Res. 2007;67:8847–8855. DOI:10.1158/0008-5472.CAN-07-0321
  • Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T-cell immunotherapy. Cancer Cell. 2013;24:589–602. DOI:10.1016/j.ccr.2013.09.014
  • Motz GT, Santoro SP, Wang LP, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20:607–615. DOI:10.1038/nm.3541
  • Samant RS, Shevde LA. Recent advances in anti-angiogenic therapy of cancer. Oncotarget. 2011;2:122–134. DOI:10.18632/oncotarget.234
  • Fox BA, Schendel DJ, Butterfield LH, et al. Defining the critical hurdles in cancer immunotherapy. J Transl Med. 2011;9:214. DOI:10.1186/1479-5876-9-214
  • Sharma SH, Thulasingam S, Nagarajan S. Chemopreventive agents targeting tumor microenvironment. Life Sci. 2016;145:74–84. DOI:10.1016/j.lfs.2015.12.016
  • Mills CD, Lenz LL, Harris RA. A breakthrough: macrophage-directed cancer immunotherapy. Cancer Res. 2016;76:513–516. DOI:10.1158/0008-5472.CAN-15-1737
  • Panni RZ, Linehan DC, DeNardo DG. Targeting tumor-infiltrating macrophages to combat cancer. Immunotherapy. 2013;5:1075–1087. DOI:10.2217/imt.13.102
  • Weigert A, Sekar D, Brune B. Tumor-associated macrophages as targets for tumor immunotherapy. Immunotherapy. 2009;1:83–95. DOI:10.2217/1750743X.1.1.83
  • van Poelgeest MI, Welters MJ, Vermeij R, et al. Vaccination against oncoproteins of HPV16 for non-invasive vulvar/vaginal lesions: lesion clearance is related to the strength of the T-cell response. Clin Cancer Res. 2016. DOI:10.1158/1078-0432.CCR-15-2594
  • Daayana S, Elkord E, Winters U, et al. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br J Cancer. 2010;102:1129–1136. DOI:10.1038/sj.bjc.6605611
  • Trimble CL, Morrow MP, Kraynyak KA, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386:2078–2088. DOI:10.1016/S0140-6736(15)00239-1 .
  • Czerniecki BJ, Koski GK, Koldovsky U, et al. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res. 2007;67:1842–1852. DOI:10.1158/0008-5472.CAN-06-4038
  • Morse MA, Niedzwiecki D, Marshall JL, et al. A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann Surg. 2013;258:879–886. DOI:10.1097/SLA.0b013e318292919e
  • Holmes JP, Gates JD, Benavides LC, et al. Optimal dose and schedule of an HER-2/neu (E75) peptide vaccine to prevent breast cancer recurrence: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer. 2008;113:1666–1675. DOI:10.1002/cncr.23772
  • Cuppens K, Vansteenkiste J. Vaccination therapy for non-small-cell lung cancer. Curr Opin Oncol. 2014;26:165–170. DOI:10.1097/CCO.0000000000000052
  • Vansteenkiste JF, Cho BC, Vanakesa T, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17:822–835. DOI:10.1016/S1470-2045(16)00099-1
  • Chang MH. Hepatitis B virus and cancer prevention. Recent Results Cancer Res. Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 2011;188:75–84. DOI:10.1007/978-3-642-10858-7_6
  • Chow EP, Danielewski JA, Fehler G, et al. Human papillomavirus in young women with Chlamydia trachomatis infection 7 years after the Australian human papillomavirus vaccination programme: a cross-sectional study. Lancet Infect Dis. 2015;15:1314–1323. DOI:10.1016/S1473-3099(15)00055-9
  • Saletta F, Dalla PL, Byrne JA. Genetic causes of cancer predisposition in children and adolescents. Transl Pediatr. 2015;4:67–75. DOI:10.3978/j.issn.2224-4336.2015.04.08
  • Finn OJ, Beatty PL. Cancer immunoprevention. Curr Opin Immunol. 2016;39:52–58. DOI:10.1016/j.coi.2016.01.002
  • Finn OJ, Khleif SN, Herberman RB. The FDA guidance on therapeutic cancer vaccines: the need for revision to include preventive cancer vaccines or for a new guidance dedicated to them. Cancer Prev Res (Phila). 2015;8:1011–1016. DOI:10.1158/1940-6207.CAPR-15-0234
  • Antonia SJ, Mirza N, Fricke I, et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res. 2006;12:878–887. DOI:10.1158/1078-0432.CCR-05-2013
  • Wu X, Feng QM, Wang Y, et al. The immunologic aspects in advanced ovarian cancer patients treated with paclitaxel and carboplatin chemotherapy. Cancer Immunol Immunother. 2010;59:279–291. DOI:10.1007/s00262-009-0749-9
  • Welters MJ, van der Sluis TC, van Meir H, et al. Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T-cell responses. Sci Transl Med. 2016;8:334ra52. DOI:10.1126/scitranslmed.aaf0746
  • Liu R, Xiong S, Zhang L, et al. Enhancement of antitumor immunity by low-dose total body irradiationis associated with selectively decreasing the proportion and number of T regulatory cells. Cell Mol Immunol. 2010;7:157–162. DOI:10.1038/cmi.2009.117
  • Camisaschi C, Filipazzi P, Tazzari M, et al. Effects of cyclophosphamide and IL-2 on regulatory CD4+ T-cell frequency and function in melanoma patients vaccinated with HLA-class I peptides: impact on the antigen-specific T-cell response. Cancer Immunol Immunother. 2013;62:897–908. DOI:10.1007/s00262-013-1397-7 .
  • Murahashi M, Hijikata Y, Yamada K, et al. Phase I clinical trial of a five-peptide cancer vaccine combined with cyclophosphamide in advanced solid tumors. Clin Immunol. 2016. DOI:10.1016/j.clim.2016.03.015 .
  • Walter S, Weinschenk T, Stenzl A, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18:1254–1261. DOI:10.1038/nm.2883 .
  • Suzuki E, Kapoor V, Jassar AS, et al. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res. 2005;11:6713–6721. DOI:10.1158/1078-0432.CCR-05-0883
  • Rettig L, Seidenberg S, Parvanova I, et al. Gemcitabine depletes regulatory T-cells in human and mice and enhances triggering of vaccine-specific cytotoxic T-cells. Int J Cancer. 2011;129:832–838. DOI:10.1002/ijc.25756
  • Sutmuller RP, van Duivenvoorde LM, van Elsas A, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T-cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med. 2001;194:823–832.
  • Casares N, Arribillaga L, Sarobe P, et al. CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T-cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination. J Immunol. 2003;171:5931–5939.
  • Prasad SJ, Farrand KJ, Matthews SA, et al. Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+CD25+ regulatory T-cells. J Immunol. 2005;174:90–98.
  • Sluijter M, van der Sluis TC, van der Velden PA, et al. Inhibition of CSF-1R supports T-cell mediated melanoma therapy. PLoS One. 2014;9:e104230. DOI:10.1371/journal.pone.0104230
  • Mok S, Koya RC, Tsui C, et al. Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy. Cancer Res. 2014;74:153–161. DOI:10.1158/0008-5472.CAN-13-1816
  • Dannull J, Su Z, Rizzieri D, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T-cells. J Clin Invest. 2005;115:3623–3633. DOI:10.1172/JCI25947
  • Iinuma H, Fukushima R, Inaba T, et al. Phase I clinical study of multiple epitope peptide vaccine combined with chemoradiation therapy in esophageal cancer patients. J Transl Med. 2014;12:84. DOI:10.1186/1479-5876-12-84
  • Hirooka Y, Itoh A, Kawashima H, et al. A combination therapy of gemcitabine with immunotherapy for patients with inoperable locally advanced pancreatic cancer. Pancreas. 2009;38:e69–e74. DOI:10.1097/MPA.0b013e318197a9e3 .
  • Chu Y, Wang LX, Yang G, et al. Efficacy of GM-CSF-producing tumor vaccine after docetaxel chemotherapy in mice bearing established Lewis lung carcinoma. J Immunother. 2006;29:367–380. DOI:10.1097/01.cji.0000199198.43587.ba
  • Tseng CW, Trimble C, Zeng Q, et al. Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts. Cancer Immunol Immunother. 2009;58:737–748. DOI:10.1007/s00262-008-0596-0
  • Moschella F, Valentini M, Arico E, et al. Unraveling cancer chemoimmunotherapy mechanisms by gene and protein expression profiling of responses to cyclophosphamide. Cancer Res. 2011;71:3528–3539. DOI:10.1158/0008-5472.CAN-10-4523
  • Klein O, Davis ID, McArthur GA, et al. Low-dose cyclophosphamide enhances antigen-specific CD4(+) T-cell responses to NY-ESO-1/ISCOMATRIX vaccine in patients with advanced melanoma. Cancer Immunol Immunother. 2015;64:507–518. DOI:10.1007/s00262-015-1656-x
  • Tanaka F, Yamaguchi H, Ohta M, et al. Intratumoral injection of dendritic cells after treatment of anticancer drugs induces tumor-specific antitumor effect in vivo. Int J Cancer. 2002;101:265–269. DOI:10.1002/ijc.10597
  • Nistico P, Capone I, Palermo B, et al. Chemotherapy enhances vaccine-induced antitumor immunity in melanoma patients. Int J Cancer. 2009;124:130–139. DOI:10.1002/ijc.23886 .
  • Palermo B, Del BD, Sottini A, et al. Dacarbazine treatment before peptide vaccination enlarges T-cell repertoire diversity of melan-a-specific, tumor-reactive CTL in melanoma patients. Cancer Res. 2010;70:7084–7092. DOI:10.1158/0008-5472.CAN-10-1326
  • Peng S, Wang JW, Karanam B, et al. Sequential cisplatin therapy and vaccination with HPV16 E6E7L2 fusion protein in saponin adjuvant GPI-0100 for the treatment of a model HPV16+ cancer. PLoS One. 2015;10:e116389. DOI:10.1371/journal.pone.0116389
  • Bracci L, Moschella F, Sestili P, et al. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin Cancer Res. 2007;13:644–653. DOI:10.1158/1078-0432.CCR-06-1209 .
  • Farsaci B, Higgins JP, Hodge JW. Consequence of dose scheduling of sunitinib on host immune response elements and vaccine combination therapy. Int J Cancer. 2012;130:1948–1959. DOI:10.1002/ijc.26219
  • Finke JH, Rini B, Ireland J, et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin Cancer Res. 2008;14:6674–6682. DOI:10.1158/1078-0432.CCR-07-5212
  • Tseng CW, Hung CF, Alvarez RD, et al. Pretreatment with cisplatin enhances E7-specific CD8+ T-Cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res. 2008;14:3185–3192. DOI:10.1158/1078-0432.CCR-08-0037
  • Lee SY, Kang TH, Knoff J, et al. Intratumoral injection of therapeutic HPV vaccinia vaccine following cisplatin enhances HPV-specific antitumor effects. Cancer Immunol Immunother. 2013;62:1175–1185. DOI:10.1007/s00262-013-1421-y
  • Berinstein NL, Karkada M, Oza AM, et al. Survivin-targeted immunotherapy drives robust polyfunctional T-cell generation and differentiation in advanced ovarian cancer patients. Oncoimmunology. 2015;4:e1026529. DOI:10.1080/2162402X.2015.1008371
  • Machiels JP, Reilly RT, Emens LA, et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res. 2001;61:3689–3697.
  • Wei SM, Fei JX, Tao F, et al. Anti-CD27 antibody potentiates antitumor effect of dendritic cell-based vaccine in prostate cancer-bearing mice. Int Surg. 2015;100:155–163. DOI:10.9738/INTSURG-D-14-00147.1
  • Tagliamonte M, Petrizzo A, Napolitano M, et al. Novel metronomic chemotherapy and cancer vaccine combinatorial strategy for hepatocellular carcinoma in a mouse model. Cancer Immunol Immunother. 2015;64:1305–1314. DOI:10.1007/s00262-015-1698-0
  • Dijkgraaf EM, Santegoets SJ, Reyners AK, et al. A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget. 2015;6:32228–32243. DOI:10.18632/oncotarget.4772 .
  • van der Sluis TC, van Duikeren S, Huppelschoten S, et al. Vaccine-induced tumor necrosis factor-producing T-cells synergize with cisplatin to promote tumor cell death. Clin Cancer Res. 2015;21:781–794. DOI:10.1158/1078-0432.CCR-14-2142
  • Gibney GT, Kudchadkar RR, DeConti RC, et al. Safety, correlative markers, and clinical results of adjuvant nivolumab in combination with vaccine in resected high-risk metastatic melanoma. Clin Cancer Res. 2015;21:712–720. DOI:10.1158/1078-0432.CCR-14-2468
  • Fu J, Malm IJ, Kadayakkara DK, et al. Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Res. 2014;74:4042–4052. DOI:10.1158/0008-5472.CAN-13-2685
  • Sawada Y, Yoshikawa T, Shimomura M, et al. Programmed death-1 blockade enhances the antitumor effects of peptide vaccine-induced peptide-specific cytotoxic T lymphocytes. Int J Oncol. 2015;46:28–36. DOI:10.3892/ijo.2014.2737
  • Mkrtichyan M, Chong N, Abu ER, et al. Anti-PD-1 antibody significantly increases therapeutic efficacy of Listeria monocytogenes (Lm)-LLO immunotherapy. J Immunother Cancer. 2013;1:15. DOI:10.1186/2051-1426-1-15
  • Wada S, Jackson CM, Yoshimura K, et al. Sequencing CTLA-4 blockade with cell-based immunotherapy for prostate cancer. J Transl Med. 2013;11:89. DOI:10.1186/1479-5876-11-89
  • Newton MR, Askeland EJ, Andresen ED, et al. Anti-interleukin-10R1 monoclonal antibody in combination with bacillus Calmette–Guerin is protective against bladder cancer metastasis in a murine orthotopic tumour model and demonstrates systemic specific anti-tumour immunity. Clin Exp Immunol. 2014;177:261–268. DOI:10.1111/cei.12315
  • Ito F, Li Q, Shreiner AB, et al. Anti-CD137 monoclonal antibody administration augments the antitumor efficacy of dendritic cell-based vaccines. Cancer Res. 2004;64:8411–8419. DOI:10.1158/0008-5472.CAN-04-0590
  • Cuadros C, Dominguez AL, Lollini PL, et al. Vaccination with dendritic cells pulsed with apoptotic tumors in combination with anti-OX40 and anti-4-1BB monoclonal antibodies induces T-cell-mediated protective immunity in Her-2/neu transgenic mice. Int J Cancer. 2005;116:934–943. DOI:10.1002/ijc.21098
  • Kim S, Buchlis G, Fridlender ZG, et al. Systemic blockade of transforming growth factor-beta signaling augments the efficacy of immunogene therapy. Cancer Res. 2008;68:10247–10256. DOI:10.1158/0008-5472.CAN-08-1494
  • Chakraborty M, Abrams SI, Coleman CN, et al. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res. 2004;64:4328–4337. DOI:10.1158/0008-5472.CAN-04-0073
  • Mondini M, Nizard M, Tran T, et al. Synergy of Radiotherapy and a Cancer Vaccine for the Treatment of HPV-Associated Head and Neck Cancer. Mol Cancer Ther. 2015;14:1336–1345. DOI:10.1158/1535-7163.MCT-14-1015
  • Fridman WH, Pages F, Sautes-Fridman C, et al. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12:298–306. DOI:10.1038/nrc3245
  • Gouttefangeas C, Walter S, Welters M, et al. Flow cytometry in cancer immunotherapy: applications, quality assurance and future. In: Cancer Immunology: Translational Medicine from Bench to Bedside (N. Rezaei editor). Springer-Verlag Berlin Heidelberg. Chapter 25: pages 471–486. DOI: 10.1007/978-3-662-44006-3
  • Welters MJ, Van Der Burg SH. Comprehensive immunomonitoring to guide the development of immunotherapeutic products for cancer. In: Prendergast GC, Jaffee EM, editors. Cancer Immunotherapy second edition: Immune suppression and tumor growth. 2013. Elsevier Academic Press London UK, Chapter 16, p. 241–258.
  • Galluzzi L, Buque A, Kepp O, et al. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell. 2015;28:690–714. DOI:10.1016/j.ccell.2015.10.012
  • Vacchelli E, Aranda F, Eggermont A, et al. Trial watch: chemotherapy with immunogenic cell death inducers. Oncoimmunology. 2014;3:e27878. DOI:10.4161/onci.27878
  • Ghiringhelli F, Larmonier N, Schmitt E, et al. CD4+CD25+ regulatory T-cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004;34:336–344. DOI:10.1002/eji.200324181
  • Lutsiak ME, Semnani RT, De PR, et al. Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood. 2005;105:2862–2868. DOI:10.1182/blood-2004-06-2410
  • Homma Y, Taniguchi K, Nakazawa M, et al. Changes in the immune cell population and cell proliferation in peripheral blood after gemcitabine-based chemotherapy for pancreatic cancer. Clin Transl Oncol. 2014;16:330–335. DOI:10.1007/s12094-013-1079-0
  • Shevchenko I, Karakhanova S, Soltek S, et al. Low-dose gemcitabine depletes regulatory T-cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. Int J Cancer. 2013;133:98–107. DOI:10.1002/ijc.27990
  • Vincent J, Mignot G, Chalmin F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T-cell-dependent antitumor immunity. Cancer Res. 2010;70:3052–3061. DOI:10.1158/0008-5472.CAN-09-3690
  • Roselli M, Cereda V, di Bari MG, et al. Effects of conventional therapeutic interventions on the number and function of regulatory T-cells. Oncoimmunology. 2013;2:e27025. DOI:10.4161/onci.27025
  • Vieweg J, Su Z, Dahm P, et al. Reversal of tumor-mediated immunosuppression. Clin Cancer Res. 2007;13:727s–32s. DOI:10.1158/1078-0432.CCR-06-1924
  • Welters MJ, Piersma SJ, van der Burg SH. T-regulatory cells in tumour-specific vaccination strategies. Expert Opin Biol Ther. 2008;8:1365–1379. DOI:10.1517/14712598.8.9.1365
  • Casares N, Rudilla F, Arribillaga L, et al. A peptide inhibitor of FOXP3 impairs regulatory T-cell activity and improves vaccine efficacy in mice. J Immunol. 2010;185:5150–5159. DOI:10.4049/jimmunol.1001114
  • Rech AJ, Mick R, Martin S, et al. CD25 blockade depletes and selectively reprograms regulatory T-cells in concert with immunotherapy in cancer patients. Sci Transl Med. 2012;4:134ra62. DOI:10.1126/scitranslmed.3003330
  • Kudo-Saito C, Schlom J, Camphausen K, et al. The requirement of multimodal therapy (vaccine, local tumor radiation, and reduction of suppressor cells) to eliminate established tumors. Clin Cancer Res. 2005;11:4533–4544. DOI:10.1158/1078-0432.CCR-04-2237
  • Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015;27:462–472. DOI:10.1016/j.ccell.2015.02.015
  • Hume DA, MacDonald KP. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 2012;119:1810–1820. DOI:10.1182/blood-2011-09-379214
  • Srivastava MK, Dubinett S, Sharma S. Targeting MDSCs enhance therapeutic vaccination responses against lung cancer. Oncoimmunology. 2012;1:1650–1651. DOI:10.4161/onci.21970
  • Moschella F, Torelli GF, Valentini M, et al. Cyclophosphamide induces a type I interferon-associated sterile inflammatory response signature in cancer patients’ blood cells: implications for cancer chemoimmunotherapy. Clin Cancer Res. 2013;19:4249–4261. DOI:10.1158/1078-0432.CCR-12-3666
  • Vermeij R, Leffers N, Hoogeboom BN, et al. Potentiation of a p53-SLP vaccine by cyclophosphamide in ovarian cancer: a single-arm phase II study. Int J Cancer. 2012;131:E670–E80. DOI:10.1002/ijc.27388
  • Kaida M, Morita-Hoshi Y, Soeda A, et al. Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer. J Immunother. 2011;34:92–99. DOI:10.1097/CJI.0b013e3181fb65b9 .
  • Correale P, Cusi MG, Tsang KY, et al. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients. J Clin Oncol. 2005;23:8950–8958. DOI:10.1200/JCO.2005.12.147
  • Bauer C, Bauernfeind F, Sterzik A, et al. Dendritic cell-based vaccination combined with gemcitabine increases survival in a murine pancreatic carcinoma model. Gut. 2007;56:1275–1282. DOI:10.1136/gut.2006.108621
  • Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571. DOI:10.1038/nature13954
  • Reck M, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol. 2013;24:75–83. DOI:10.1093/annonc/mds213 .
  • Muller AJ, DuHadaway JB, Donover PS, et al. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med. 2005;11:312–319. DOI:10.1038/nm1196.
  • Bjoern J, Iversen TZ, Nitschke NJ, et al. Safety, immune and clinical responses in metastatic melanoma patients vaccinated with a long peptide derived from indoleamine 2,3-dioxygenase in combination with ipilimumab. Cytotherapy. 2016;18:1043–1055. DOI:10.1016/j.jcyt.2016.05.010
  • Kvistborg P, Philips D, Kelderman S, et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T-cell response. Sci Transl Med. 2014;6:254ra128. DOI:10.1126/scitranslmed.3008918
  • Peggs KS, Quezada SA, Chambers CA, et al. Blockade of CTLA-4 on both effector and regulatory T-cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 2009;206:1717–1725. DOI:10.1084/jem.20082492
  • Romano E, Kusio-Kobialka M, Foukas PG, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T-cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci U S A. 2015;112:6140–6145. DOI:10.1073/pnas.1417320112
  • van der Sluis TC, Sluijter M, van Duikeren S, et al. Therapeutic Peptide Vaccine-Induced CD8 T Cells Strongly Modulate Intratumoral Macrophages Required for Tumor Regression. Cancer Immunol Res. 2015;3:1042–1051. DOI:10.1158/2326-6066.CIR-15-0052
  • Association of Cancer Immunotherapy’s (CIMT’s) immunoguiding program. Available from: http://www.cimt.eu/workgroups/cip/
  • Cancer Immunotherapy Consortium (CIC). http://www.cancerresearch.org/cic
  • Britten CM, Gouttefangeas C, Welters MJ, et al. The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays. Cancer Immunol Immunother. 2008;57:289–302. DOI:10.1007/s00262-007-0378-0
  • Filbert H, Attig S, Bidmon N, et al. Serum-free freezing media support high cell quality and excellent ELISPOT assay performance across a wide variety of different assay protocols. Cancer Immunol Immunother. 2013;62:615–627. DOI:10.1007/s00262-012-1359-5
  • Britten CM, Janetzki S, Butterfield LH, et al. T-cell assays and MIATA: the essential minimum for maximum impact. Immunity. 2012;37:1–2. DOI:10.1016/j.immuni.2012.07.010
  • Young KH, Baird JR, Savage T, et al. Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy. PLoS One. 2016;11:e0157164. DOI:10.1371/journal.pone.0157164