581
Views
5
CrossRef citations to date
0
Altmetric
Review

Antibody therapeutics for treating prostate cancer: where are we now and what comes next?

, , , , &
Pages 135-149 | Received 20 Jun 2016, Accepted 04 Nov 2016, Published online: 20 Nov 2016

References

  • Reichert JM, Rosensweig CJ, Faden LB, et al. Monoclonal antibody successes in the clinic. Nat Biotechnol. 2005;23(9):1073–1078. DOI:10.1038/nbt0905-1073
  • Aoun F, Kourie HR, Artigas C, et al. Next revolution in molecular theranostics: personalized medicine for urologic cancers. Future Oncol. 2015;11(15):2205–2219. DOI:10.2217/fon.15.104
  • Carvalho S, Levi-Schaffer F, Sela M, et al. Immunotherapy of cancer: from monoclonal to oligoclonal cocktails of anti-cancer antibodies: IUPHAR review 18. Br J Pharmacol. 2016;173(9):1407–1424. DOI:10.1111/bph.13450
  • Waldmann TA. Immunotherapy: past, present and future. Nat Med. 2003;9(3):269–277. DOI:10.1038/nm0303-269
  • Weiner GJ. Monoclonal antibody mechanisms of action in cancer. Immunol Res. 2007;39(1–3):271–278.
  • Clynes RA, Towers TL, Presta LG, et al. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–446. DOI:10.1038/74704
  • Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21(21):3940–3947. DOI:10.1200/JCO.2003.05.013
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–287. DOI:10.1038/nrc3236
  • Francis RJ, Sharma SK, Springer C, et al. A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours. Br J Cancer. 2002;87(6):600–607. DOI:10.1038/sj.bjc.6600517
  • Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66(1):7–30. DOI:10.3322/caac.21332
  • Ross JS, Gray KE, Webb IJ, et al. Antibody-based therapeutics: focus on prostate cancer. Cancer Metastasis Rev. 2005;24(4):521–537. DOI:10.1007/s10555-005-6194-0
  • Haseman MK, Rosenthal SA, Polascik TJ. Capromab pendetide imaging of prostate cancer. Cancer Biother Radiopharm. 2000;15(2):131–140. DOI:10.1089/cbr.2000.15.131
  • Leung K. 111In-Capromab pendetide. Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information (US); 2004-2013. 2005 Oct 05 [updated 2008 May 24].
  • Santini D, Perrone G, Roato I, et al. Expression pattern of receptor activator of NFκB (RANK) in a series of primary solid tumors and related bone metastases. J Cell Physiol. 2011;226(3):780–784. DOI:10.1002/jcp.22402
  • Smith MR, Egerdie B, Hernández Toriz N, et al., Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 361(8): 745–755. 2009. DOI:10.1056/NEJMoa0809003
  • Fizazi K, Carducci M, Smith M, et al., Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 377(9768): 813–822. 2011. DOI:10.1016/S0140-6736(10)62344-6
  • Bienz M, Saad F. Management of bone metastases in prostate cancer: a review. Curr Opin Support Palliat Care. 2015;9(3):261–267. DOI:10.1097/SPC.0000000000000157
  • Kasperzyk JL, Finn SP, Flavin R, et al. Prostate-specific membrane antigen protein expression in tumor tissue and risk of lethal prostate cancer. Cancer Epidemiol Biomarkers Prev. 2013;22(12):2354–2363. DOI:10.1158/1055-9965.EPI-13-0668
  • Murga JD, Moorji SM, Han AQ, et al. Synergistic co-targeting of prostate-specific membrane antigen and androgen receptor in prostate cancer. Prostate. 2015;75(3):242–254. DOI:10.1002/pros.22910
  • Sodee DB, Conant R, Chalfant M, et al. Preliminary imaging results using In-111 labeled CYT-356 (Prostascint) in the detection of recurrent prostate cancer. Clin Nucl Med. 1996;21(10):759–767.
  • Manyak MJ, Hinkle GH, Olsen JO, et al. Immunoscintigraphy with indium-111-capromab pendetide: evaluation before definitive therapy in patients with prostate cancer. Urology. 1999;54(6):1058–1063.
  • Kahn D, Austin JC, Maguire RT, et al. A phase II study of [90Y] yttrium-capromab pendetide in the treatment of men with prostate cancer recurrence following radical prostatectomy. Cancer Biother Radiopharm. 1999;14(2):99–111. DOI:10.1089/cbr.1999.14.99
  • Levesque PE, Nieh PT, Zinman LN, et al. Radiolabeled monoclonal antibody indium 111-labeled CYT-356 localizes extraprostatic recurrent carcinoma after prostatectomy. Urology. 1998;51(6):978–984.
  • Thomas CT, Bradshaw PT, Pollock BH, et al. Indium-111-capromab pendetide radioimmunoscintigraphy and prognosis for durable biochemical response to salvage radiation therapy in men after failed prostatectomy. J Clin Oncol. 2003;21(9):1715–1721. DOI:10.1200/JCO.2003.05.138
  • Wilkinson S, Chodak G. The role of 111indium-capromab pendetide imaging for assessing biochemical failure after radical prostatectomy. J Urol. 2004;172(1):133–136. DOI:10.1097/01.ju.0000132138.02846.08
  • Nagda SN, Mohideen N, Lo SS, et al. Long-term follow-up of 111In-capromab pendetide (ProstaScint) scan as pretreatment assessment in patients who undergo salvage radiotherapy for rising prostate-specific antigen after radical prostatectomy for prostate cancer. Int J Radiat Oncol Biol Phys. 2007;67(3):834–840. DOI:10.1016/j.ijrobp.2006.09.026
  • Aparici CM, Carlson D, Nguyen N, et al. Combined SPECT and multidetector CT for prostate cancer evaluations. Am J Nucl Med Mol Imaging. 2012;2(1):48–54.
  • Schuster DM, Nieh PT, Jani AB, et al. Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol. 2014;191(5):1446–1453. DOI:10.1016/j.juro.2013.10.065
  • Wong WW, Schild SE, Vora SA, et al. Image-guided radiotherapy for prostate cancer: a prospective trial of concomitant boost using indium-111-capromab pendetide (ProstaScint) imaging. Int J Radiat Oncol Biol Phys. 2011;81(4):e423–9. DOI:10.1016/S1470-2045(14)70189-5
  • Deb N, Goris M, Trisler K, et al. Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin Cancer Res. 1996;2(8):1289–1297.
  • Bander NH, Trabulsi EJ, Kostakoglu L, et al. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol. 2003;170(5):1717–1721. DOI:10.1097/01.ju.0000091655.77601.0c
  • Vallabhajosula S, Kuji I, Hamacher KA, et al. Pharmacokinetics and biodistribution of 111In- and 177Lu-labeled J591 antibody specific for prostate-specific membrane antigen: prediction of 90Y-J591 radiation dosimetry based on 111In or 177Lu? J Nucl Med. 2005;46(4):634–641.
  • Bander NH, Milowsky MI, Nanus DM, et al., Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 23(21): 4591–4601. 2005. DOI:10.1200/JCO.2005.05.160
  • Akhtar NH, Pail O, Saran A, et al. Prostate-specific membrane antigen-based therapeutics. Adv Urol. 2012;2012:1–9. DOI:10.1155/2012/973820
  • Milowsky MI, Nanus DM, Kostakoglu L, et al. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol. 2004;22(13):2522–2531. DOI:10.1200/JCO.2004.09.154
  • Tagawa ST, Milowsky MI, Morris M, et al., Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 19(18): 5182–5191. 2013. DOI:10.1158/1078-0432.CCR-13-0231
  • Vallabhajosula S, Nikolopoulou A, Jhanwar YS, et al. Radioimmunotherapy of metastatic prostate cancer with 177Lu-DOTAhuJ591 anti prostate specific membrane antigen specific monoclonal antibody. Curr Radiopharm. 2016;9(1):44–53.
  • Tagawa ST, Osborne J, Christos PJ, et al. A randomized phase II trial of 177lu radiolabeled monoclonal antibody J591 (177Lu-J591) and ketoconazole in patients (pts) with high-risk castrate biochemically relapsed prostate cancer (PC) after local therapy. J Clin Oncol. 2010;28:15s(suppl; abstr TPS248.
  • Tagawa ST, Batra J, Vallabhajosula S, et al. Final results of 2-dose fractionation of 177Lu-J591 for progressive metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2016;34; abstr 5022.
  • Tagawa ST, Whang YE, Kaur G, et al. Phase I trial of docetaxel/prednisone plus fractionated dose radiolabeled anti-prostate-specific membrane antigen (PSMA) monoclonal antibody 177lu-J591 in patients with metastatic, castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2014;32:5s(suppl; abstr 5064). DOI:10.1200/JCO.2013.54.6911
  • Pandit-Taskar N, O’Donoghue JA, Durack JC, et al. A phase I/II study for analytic validation of 89Zr-J591 immunopet as a molecular imaging agent for metastatic prostate cancer. Clin Cancer Res. 2015;21(23):5277–5285. DOI:10.1158/1078-0432.CCR-15-0552
  • Osborne JR, Green DA, Spratt DE, et al. A prospective pilot study of (89)Zr-J591/prostate specific membrane antigen positron emission tomography in men with localized prostate cancer undergoing radical prostatectomy. J Urol. 2014;191(5):1439–1445. DOI:10.1016/j.juro.2013.10.041
  • Morris MJ, Martinez DF, Durack JC, et al. A phase I/IIa trial of prostate specific membrane antigen (PSMA) positron emission tomography (PET) imaging with 89Zr-Df-IAB2M in metastatic prostate cancer (PCa). J Clin Oncol. 2016;34(suppl 2S); abstr 287.
  • Evans MJ, Smith-Jones PM, Wongvipat J, et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci U S A. 2011;108(23):9578–9582. DOI:10.1073/pnas.1106383108
  • Galsky MD, Eisenberger M, Moore-Cooper S, et al. Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J Clin Oncol. 2008;26(13):2147–2154. DOI:10.1200/JCO.2007.15.0532
  • Petrylak DP, Vogelzang NJ, Chatta GS, et al. A phase 2 study of prostate specific membrane antigen antibody drug conjugate (PSMA ADC) in patients (pts) with progressive metastatic castration-resistant prostate cancer (mCRPC) following abiraterone and/or enzalutamide (abi/enz). J Clin Oncol. 2015;33(suppl 7); abstr 144.
  • Gu Z, Thomas G, Yamashiro J, et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene. 2000;19(10):1288–1296. DOI:10.1038/sj.onc.1203426
  • Morris MJ, Eisenberger MA, Pili R, et al. A phase I/IIA study of AGS-PSCA for castration-resistant prostate cancer. Ann Oncol. 2012;23(10):2714–2719. DOI:10.1093/annonc/mds078
  • Sonn GA, Behesnilian AS, Jiang ZK, et al. Fluorescent image-guided surgery with an Anti-Prostate Stem Cell Antigen (PSCA) diabody enables targeted resection of mouse prostate cancer xenografts in real time. Clin Cancer Res. 2016;22(6):1403–1412. DOI:10.1158/1078-0432.CCR-15-0503
  • Knowles SM, Tavaré R, Zettlitz KA, et al. Applications of immunoPET: using 124I-anti-PSCA A11 minibody for imaging disease progression and response to therapy in mouse xenograft models of prostate cancer. Clin Cancer Res. 2014;20(24):6367–6378. DOI:10.1158/1078-0432.CCR-14-1452
  • Yu S, Feng F, Wang K, et al. The therapeutic efficacy of I131-PSCA-mAb in orthotopic mouse models of prostate cancer. Eur J Med Res. 2013;18:56. DOI:10.1186/2047-783X-18-56
  • Arndt C, Feldmann A, Töpfer K, et al. Redirection of CD4+ and CD8+ T lymphocytes via a novel antibody-based modular targeting system triggers efficient killing of PSCA+ prostate tumor cells. Prostate. 2014;74(13):1347–1358. DOI:10.1002/pros.22851
  • Gao X, Luo Y, Wang Y, et al. Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy. Int J Nanomedicine. 2012;7:4037–4051. DOI:10.2147/IJN.S32804
  • Gomes IM, Arinto P, Lopes C, et al. STEAP1 is overexpressed in prostate cancer and prostatic intraepithelial neoplasia lesions, and it is positively associated with Gleason score. Oncol U. 2014;32(1):53.e23-9.
  • Ihlaseh-Catalano SM, Drigo SA, de Jesus CM, et al. STEAP1 protein overexpression is an independent marker for biochemical recurrence in prostate carcinoma. Histopathology. 2013;63(5):678–685. DOI:10.1111/his.12226
  • Danila DC, Szmulewitz RZ, Baron AD, et al. A phase I study of DSTP3086S, an antibody-drug conjugate (ADC) targeting STEAP-1, in patients (pts) with metastatic castration-resistant prostate cancer (CRPC). J Clin Oncol. 2014;32:5s(suppl; abstr 5024). DOI:10.1200/JCO.2013.54.6911
  • Carrasquillo JA, Danila DC, Beylergil V, et al. Initial PET imaging and pharmacokinetic results from a phase I/II study of Zr-89-labeled anti-STEAP1 antibody in metastatic castrate-resistant prostate cancer (mCRPC) patients. Cancer Res. 2014;74:19Suppl; abstr 2069. DOI:10.1158/0008-5472.CAN-13-3514
  • Danila DC, Fleisher M, Carrasquillo JA, et al. STEAP1 as a predictive biomarker for antibody-drug conjugate (ADC) activity in metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol. 2015;33; abstr 5029).
  • Saad F, Miller K. Current and emerging immunotherapies for castration-resistant prostate cancer. Urology. 2015;85(5):976–986. DOI:10.1016/j.urology.2014.12.029
  • Thompson RH, Allison JP, Kwon ED. Anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) immunotherapy for the treatment of prostate cancer. Urol Oncol. 2006;24(5):442–447. DOI:10.1016/j.urolonc.2005.08.011
  • Lynch TJ, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012 Jun 10;30(17):2046–2054.
  • Galsky MD, Noah H, Starodub A, et al. Impact of chemotherapy alone, and chemotherapy plus ipilimumab, on circulating immune cells in patients with metastatic bladder cancer. J Immunother Cancer. 2015;3(Suppl 2):P257. DOI:10.1186/2051-1426-3-S2-P257
  • Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–723. DOI:10.1056/NEJMoa1003466
  • Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–2526. DOI:10.1056/NEJMoa1104621
  • Slovin SF, Higano CS, Hamid O, et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013;24(7):1813–1821. DOI:10.1093/annonc/mdt107
  • Kwon ED, Drake CG, Scher HI, et al., Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15(7): 700–712. 2014. DOI:10.1016/S1470-2045(14)70189-5
  • van den Eertwegh AJ, Versluis J, van den Berg HP, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(5):509–517. DOI:10.1016/S1470-2045(12)70007-4
  • Madan RA, Mohebtash M, Arlen PM, et al. Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(5):501–508. DOI:10.1016/S1470-2045(12)70006-2
  • Scholz MC. Sipuleucel-T in combination with mini-dose ipilimumab for metastatic, castrate-resistant prostate cancer. J Clin Oncol. 2015;33:abstr e22104.
  • Tollefson MK, Karnes RJ, Thompson RH, et al. A randomized phase II study of ipilimumab with androgen ablation compared with androgen ablation alone in patients with advanced prostate cancer. GCS. 2010;abstr 168.
  • Sfanos KS, Bruno TC, Meeker AK, et al. Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate. 2009;69(15):1694–1703. DOI:10.1002/pros.21020
  • Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–5074. DOI:10.1158/1078-0432.CCR-13-3271
  • Bishop JL, Sio A, Angeles A, et al. PD-L1 is highly expressed in Enzalutamide resistant prostate cancer. Oncotarget. 2015;6(1):234–242. DOI:10.18632/oncotarget.2703
  • Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–3175. DOI:10.1200/JCO.2009.26.7609
  • Brahmer JR, Topalian SL, Powderly J, et al. Phase II experience with MDX-1106, an anti-PD-1 monoclonal antibody, in patients with selected refractory or relapsed malignancies. J Clin Oncol. 2009;27:15s(suppl; abstr 3018).
  • Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–2454.
  • Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–135. DOI:10.1056/NEJMoa1504627
  • Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–1639. DOI:10.1056/NEJMoa1507643
  • Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–1813. DOI:10.1056/NEJMoa1510665
  • Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–2532. DOI:10.1056/NEJMoa1503093
  • Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–1920. DOI:10.1016/S0140-6736(16)00561-4
  • Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22(3):298–305. DOI:10.1038/nm.4045
  • Beg AA, Gray JE. HDAC inhibitors with PD-1 blockade: a promising strategy for treatment of multiple cancer types? Epigenomics. 2016;8(8):1015–1017. DOI:10.2217/epi-2016-0066
  • Friedman CF, Postow MA. Emerging tissue and blood-based biomarkers that may predict response to immune checkpoint inhibition. Curr Oncol Rep. 2016;18(4):21. DOI:10.1007/s11912-016-0509-x
  • Slovin SF. Biomarkers for immunotherapy in genitourinary malignancies. Urol Oncol. 2016;34(4):205–213. DOI:10.1016/j.urolonc.2015.02.007
  • Sanmamed MF, Pastor F, Rodriguez A, et al. Agonists of Co-stimulation in cancer immunotherapy directed against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol. 2015;42(4):640–655. DOI:10.1053/j.seminoncol.2015.05.014
  • Barach YS, Lee JS, Zang X. T cell coinhibition in prostate cancer: new immune evasion pathways and emerging therapeutics. Trends Mol Med. 2011;17(1):47–55. DOI:10.1016/j.molmed.2010.09.006
  • Fan G, Wang Z, Hao M, et al. Bispecific antibodies and their applications. J Hematol Oncol. 2015;8:130. DOI:10.1186/s13045-015-0227-0
  • Poovassery JS, Kang JC, Kim D, et al. Antibody targeting of HER2/HER3 signaling overcomes heregulin-induced resistance to PI3K inhibition in prostate cancer. Int J Cancer. 2015;137(2):267–277. DOI:10.1002/ijc.29378
  • van Rij CM, Frielink C, Goldenberg DM, et al. Pretargeted radioimmunotherapy of prostate cancer with an anti-TROP-2×Anti-HSG bispecific antibody and a (177)Lu-labeled peptide. Cancer Biother Radiopharm. 2014;29(8):323–329. DOI:10.1089/cbr.2014.1660
  • Vallera DA, Zhang B, Gleason MK, et al. Heterodimeric bispecific single-chain variable-fragment antibodies against EpCAM and CD16 induce effective antibody-dependent cellular cytotoxicity against human carcinoma cells. Cancer Biother Radiopharm. 2013;28(4):274–282.
  • Friedrich M, Raum T, Lutterbuese R, et al. Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens. Mol Cancer Ther. 2012;11(12):2664–2673. DOI:10.1158/1535-7163.MCT-12-0042
  • Yamamoto K, Trad A, Baumgart A, et al. A novel bispecific single-chain antibody for ADAM17 and CD3 induces T-cell-mediated lysis of prostate cancer cells. Biochem J. 2012;445(1):135–144. DOI:10.1042/BJ20120433
  • Weidner N, Carroll PR, Flax J, et al. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol. 1993;143(2):401–409.
  • Picus J, Halabi S, Kelly WK, et al. A phase 2 study of estramustine, docetaxel, and bevacizumab in men with castrate-resistant prostate cancer: results from cancer and leukemia group B study 90006. Cancer. 2011;117(3):526–533. DOI:10.1002/cncr.25421
  • Di Lorenzo G, Figg WD, Fossa SD, et al. Combination of bevacizumab and docetaxel in docetaxel-pretreated hormone-refractory prostate cancer: a phase 2 study. Eur Urol. 2008;54(5):1089–1094. DOI:10.1016/j.eururo.2008.01.082
  • Kelly WK, Halabi S, Carducci M, et al., Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol. 30(13): 1534–1540. 2012. DOI:10.1200/JCO.2011.39.4767
  • McKay RR, Zurita AJ, Werner L, et al. A Randomized phase II trial of short-course androgen deprivation therapy with or without bevacizumab for patients with recurrent prostate cancer after definitive local therapy. J Clin Oncol. 2016;34(16):1913–1920. DOI:10.1200/JCO.2015.65.3154
  • Ross RW, Galsky MD, Febbo P, et al. Phase 2 study of neoadjuvant docetaxel plus bevacizumab in patients with high-risk localized prostate cancer: a prostate cancer clinical trials consortium trial. Cancer. 2012;118(19):4777–4784. DOI:10.1002/cncr.27416
  • Hussain M, Rathkopf D, Liu G, et al., A randomised non-comparative phase II trial of cixutumumab (IMC-A12) or ramucirumab (IMC-1121B) plus mitoxantrone and prednisone in men with metastatic docetaxel-pretreated castration-resistant prostate cancer. Eur J Cancer. 51(13): 1714–1724. 2015. DOI:10.1016/j.ejca.2015.05.019
  • Lin CI, Merley A, Sciuto TE, et al. TM4SF1: a new vascular therapeutic target in cancer. Angiogenesis. 2014;17(4):897–907. DOI:10.1007/s10456-014-9437-2
  • Sciuto TE, Merley A, Lin CI, et al. Intracellular distribution of TM4SF1 and internalization of TM4SF1-antibody complex in vascular endothelial cells. Biochem Biophys Res Commun. 2015;465(3):338–343. DOI:10.1016/j.bbrc.2015.07.142
  • Wikström P, Lissbrant IF, Stattin P, et al. Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate. 2002;51(4):268–275. DOI:10.1002/pros.10083
  • Karzai FH, Apolo AB, Cao L, et al. A phase I study of TRC105 anti-endoglin (CD105) antibody in metastatic castration-resistant prostate cancer. BJU Int. 2015;116(4):546–555. DOI:10.1111/bju.12986
  • Heidenreich A, Rawal SK, Szkarlat K, et al. A randomized, double-blind, multicenter, phase 2 study of a human monoclonal antibody to human αν integrins (intetumumab) in combination with docetaxel and prednisone for the first-line treatment of patients with metastatic castration-resistant prostate cancer. Ann Oncol. 2013;24(2):329–336. DOI:10.1093/annonc/mds505
  • Cuvillier O, Ader I, Bouquerel P, et al. Effect of a therapeutic sphingosine 1-phosphate antibody on intratumoral hypoxia and sensitivity to standard chemotherapy in prostate cancer animal model. J Clin Oncol. 2011;29(suppl 7); abstr 24.
  • Gordon MS, Just R, Rosen LS, et al. A phase I study of sonepcizumab (S), a humanized monoclonal antibody to sphingosine-1-phosphate (S1P), in patients with advanced solid tumors. J Clin Oncol. 2010;28:15s(suppl; abstr 2560).
  • Wallner L, Dai J, Escara-Wilke J, et al. Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice. Cancer Res. 2006;66(6):3087–3095. DOI:10.1158/0008-5472.CAN-05-3447
  • Dorff TB, Goldman B, Pinski JK, et al. Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res. 2010;16(11):3028–3034. DOI:10.1158/1078-0432.CCR-09-3122
  • Hudes G, Tagawa ST, Whang YE, et al. A phase 1 study of a chimeric monoclonal antibody against interleukin-6, siltuximab, combined with docetaxel in patients with metastatic castration-resistant prostate cancer. Invest New Drugs. 2013;31(3):669–676. DOI:10.1007/s10637-012-9857-z
  • Fizazi K, de Bono JS, Flechon A, et al. Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer. Eur J Cancer. 2012;48(1):85–93. DOI:10.1016/j.ejca.2011.10.014
  • Hellawell GO, Turner GD, Davies DR, et al. Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res. 2002;62(10):2942–2950.
  • Salatino M, Schillaci R, Proietti CJ, et al. Inhibition of in vivo breast cancer growth by antisense oligodeoxynucleotides to type I insulin-like growth factor receptor mRNA involves inactivation of ErbBs, PI-3K/Akt and p42/p44 MAPK signaling pathways but not modulation of progesterone receptor activity. Oncogene. 2004;23(30):5161–5174. DOI:10.1038/sj.onc.1207659
  • Molife LR, Fong PC, Paccagnella L, et al. The insulin-like growth factor-I receptor inhibitor figitumumab (CP-751,871) in combination with docetaxel in patients with advanced solid tumours: results of a phase Ib dose-escalation, open-label study. Br J Cancer. 2010;103(3):332–339. DOI:10.1038/sj.bjc.6605767
  • Chi KN, Gleave ME, Fazli L, et al. A phase II pharmacodynamic study of preoperative figitumumab in patients with localized prostate cancer. Clin Cancer Res. 2012;18(12):3407–3413. DOI:10.1158/1078-0432.CCR-12-0482
  • de Bono JS, Piulats JM, Pandha HS, et al., Phase II randomized study of figitumumab plus docetaxel and docetaxel alone with crossover for metastatic castration-resistant prostate cancer. Clin Cancer Res. 20(7): 1925–1934. 2014. DOI:10.1158/1078-0432.CCR-13-1869
  • Wu JD, Odman A, Higgins LM, et al. In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clin Cancer Res. 2005;11(8):3065–3074. DOI:10.1158/1078-0432.CCR-04-1586
  • Wu JD, Haugk K, Woodke L, et al. Interaction of IGF signaling and the androgen receptor in prostate cancer progression. J Cell Biochem. 2006;99(2):392–401. DOI:10.1002/jcb.20929
  • Yu EY, Li H, Higano CS, et al. SWOG S0925: A randomized phase ii study of androgen deprivation combined with cixutumumab versus androgen deprivation alone in patients with new metastatic hormone-sensitive prostate cancer. J Clin Oncol. 2015;33(14):1601–1608. DOI:10.1200/JCO.2014.59.4127
  • Humphrey PA, Zhu X, Zarnegar R, et al. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am J Pathol. 1995;147(2):386–396.
  • Pisters LL, Troncoso P, Zhau HE, et al. c-met proto-oncogene expression in benign and malignant human prostate tissues. J Urol. 1995;154(1):293–298.
  • Verras M, Lee J, Xue H, et al. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res. 2007;67(3):967–975. DOI:10.1158/0008-5472.CAN-06-3552
  • Jun HT, Sun J, Rex K, et al. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin Cancer Res. 2007;13(22 Pt 1):6735–6742. DOI:10.1158/1078-0432.CCR-06-2969
  • Ryan CJ, Rosenthal M, Ng S, et al. Targeted MET inhibition in castration-resistant prostate cancer: a randomized phase II study and biomarker analysis with rilotumumab plus mitoxantrone and prednisone. Clin Cancer Res. 2013;19(1):215–224. DOI:10.1158/1078-0432.CCR-12-2605
  • Rabbani SA, Ateeq B, Arakelian A, et al. An anti-urokinase plasminogen activator receptor antibody (ATN-658) blocks prostate cancer invasion, migration, growth, and experimental skeletal metastasis in vitro and in vivo. Neoplasia. 2010;12(10):778–788.
  • Shuptrine CW, Surana R, Weiner LM. Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol. 2012;22(1):3–13. DOI:10.1016/j.semcancer.2011.12.009
  • McShane LM, Hunsberger S, Adjei AA. Effective incorporation of biomarkers into phase II trials. Clin Cancer Res. 2009;15(6):1898–1905. DOI:10.1158/1078-0432.CCR-08-2033
  • Miyamoto DT, Lee RJ, Stott SL, et al. Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov. 2012;2(11):995–1003. DOI:10.1158/2159-8290.CD-12-0222
  • Deng Q, Tang DG. Androgen receptor and prostate cancer stem cells: biological mechanisms and clinical implications. Endocr Relat Cancer. 2015;22(6):T209–20. DOI:10.1530/ERC-15-0217
  • Khamisipour G, Jadidi-Niaragh F, Jahromi AS, et al. Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumour Biol. 2016;37(8):10021–10039. DOI:10.1007/s13277-016-5059-1
  • Naujokat C. Monoclonal antibodies against human cancer stem cells. Immunotherapy. 2014;6(3):290–308. DOI:10.2217/imt.14.4
  • Ranji P, Salmani KT, Saeedikhoo S, et al. Targeting cancer stem cell-specific markers and/or associated signaling pathways for overcoming cancer drug resistance. Tumour Biol. 2016 Aug 26;37. 13059–13075. Epub ahead of print. DOI:10.1007/s13277-016-5294-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.