468
Views
18
CrossRef citations to date
0
Altmetric
Review

Challenges for the application of optical stimulation in the cochlea for the study and treatment of hearing loss

, , &
Pages 213-223 | Received 18 Aug 2016, Accepted 09 Dec 2016, Published online: 22 Dec 2016

References

  • World Health Organization. WHO Global estimates on prevalence of hearing loss. 2012. [cited 2016 Jul 4] Available from: http://www.who.int/pbd/deafness/WHO_GE_HL.pdf.
  • Friesen LM, Shannon RV, Baskent D, et al. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am. 2001;110:1150–1163.
  • Smith ZM, Delgutte B, Oxenham AJ. Chimaeric sounds reveal dichotomies in auditory perception. Nature. 2002;416:87–90. DOI:10.1038/416087a
  • George SS, Wise AK, Fallon JB, et al. Evaluation of focused multipolar stimulation for cochlear implants in long-term deafened cats. J Neural Eng. 2015;12:036003. DOI:10.1088/1741-2560/12/3/036003
  • Snyder RL, Bierer JA, Middlebrooks JC. Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. J Assoc Res Otolaryngol. 2004;5:305–322. DOI:10.1007/s10162-004-4026-5
  • van Den Honert C, Stypulkowski PH. Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve. Hear Res. 1987;29:195–206.
  • Fu QJ, Nogaki G. Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing. J Assoc Res Otolaryngol. 2005;6:19–27. DOI:10.1007/s10162-004-5024-3
  • Henry BA, Turner CW, Behrens A. Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners. J Acoust Soc Am. 2005;118:1111–1121.
  • McDermott H. An advanced multiple channel cochlear implant. IEEE Trans Biomed Eng. 1989;36:789–797. DOI:10.1109/10.32112
  • McDermott HJ, McKay CM, Vandali AE. A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant. J Acoust Soc Am. 1992;91:3367–3371.
  • Wells J, Kao C, Mariappan K, et al. Optical stimulation of neural tissue in vivo. Opt Lett. 2005;30:504–506.
  • Teudt IU, Nevel AE, Izzo AD, et al. Optical stimulation of the facial nerve: a new monitoring technique? Laryngoscope. 2007;117:1641–1647. DOI:10.1097/MLG.0b013e318074ec00
  • Izzo AD, Richter CP, Jansen ED, et al. Laser stimulation of the auditory nerve. Lasers Surg Med. 2006;38:745–753. DOI:10.1002/lsm.20358
  • Cayce JM, Friedman RM, Chen G, et al. Infrared neural stimulation of primary visual cortex in non-human primates. Neuroimage. 2014;84:181–190. DOI:10.1016/j.neuroimage.2013.08.040
  • Wang YT, Gu S, Ma P, et al. Optical stimulation enables paced electrophysiological studies in embryonic hearts. Biomed Opt Express. 2014;5:1000–1013. DOI:10.1364/BOE.5.001000
  • Thompson AC, Wade SA, Pawsey NC, et al. Infrared neural stimulation: influence of stimulation site spacing and repetition rates on heating. IEEE Trans Biomed Eng. 2013;60:3534–3541. DOI:10.1109/TBME.2013.2272796
  • Wells J, Kao C, Konrad P, et al. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys J. 2007;93:2567–2580. DOI:10.1529/biophysj.107.104786
  • Moreno LE, Rajguru SM, Matic AI, et al. Infrared neural stimulation: beam path in the guinea pig cochlea. Hear Res. 2011;282:289–302. DOI:10.1016/j.heares.2011.06.006
  • Goyal V, Rajguru S, Matic AI, et al. Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation. Anat Rec (Hoboken). 2012;295:1987–1999. DOI:10.1002/ar.22583
  • Izzo AD, Suh E, Pathria J, et al. Selectivity of neural stimulation in the auditory system: a comparison of optic and electric stimuli. J Biomed Opt. 2007;12:021008. DOI:10.1117/1.2714296
  • Richter CP, Bayon R, Izzo AD, et al. Optical stimulation of auditory neurons: effects of acute and chronic deafening. Hear Res. 2008;242:42–51. DOI:10.1016/j.heares.2008.01.011
  • Guan T, Zhu K, Chen F, et al. Auditory nerve impulses induced by 980 nm laser. J Biomed Opt. 2015;20:88004. DOI:10.1117/1.JBO.20.8.088004
  • Wang J, Lu J, Tian L. Effect of fiberoptic collimation technique on 808 nm wavelength laser stimulation of cochlear neurons. Photomed Laser Surg. 2016;34:252–257. DOI:10.1089/pho.2015.4065
  • Xia N, Wu XY, Wang X, et al. Pulsed 808-nm infrared laser stimulation of the auditory nerve in guinea pig cochlea. Lasers Med Sci. 2014;29:343–349. DOI:10.1007/s10103-013-1348-8
  • Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–1268. DOI:10.1038/nn1525
  • Schultz M, Baumhoff P, Maier H, et al. Nanosecond laser pulse stimulation of the inner ear-a wavelength study. Biomed Opt Express. 2012;3:3332–3345. DOI:10.1364/BOE.3.003332
  • Teudt IU, Maier H, Richter CP, et al. Acoustic events and “optophonic” cochlear responses induced by pulsed near-infrared laser. IEEE Trans Biomed Eng. 2011;58:1648–1655. DOI:10.1109/TBME.2011.2108297
  • Thompson AC, Fallon JB, Wise AK, et al. Infrared neural stimulation fails to evoke neural activity in the deaf guinea pig cochlea. Hear Res. 2015;324:46–53. DOI:10.1016/j.heares.2015.03.005
  • Verma RU, Guex AA, Hancock KE, et al. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus. Hear Res. 2014;310:69–75. DOI:10.1016/j.heares.2014.01.008
  • Kallweit N, Baumhoff P, Krüger A, et al. Signal and response properties indicate an optoacoustic effect underlying the intra-cochlear laser-optical stimulation. Photonic Ther Diagn XII. 2016. Proc. SPIE 9689. DOI:10.1117/12.2210926
  • Young HK, Tan X, Xia N, et al. Target structures for cochlear infrared neural stimulation. Neurophotonics. 2015;2:025002. DOI:10.1117/1.NPh.2.2.025002
  • Tan X, Rajguru S, Young H, et al. Radiant energy required for infrared neural stimulation. Sci Rep. 2015;5:13273. DOI:10.1038/srep13273
  • Kallweit N, Baumhoff P, Krueger A, et al. Optoacoustic effect is responsible for laser-induced cochlear responses. Sci Rep. 2016;6:28141. DOI:10.1038/srep28141
  • Albert ES, Bec JM, Desmadryl G, et al. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J Neurophysiol. 2012;107:3227–3234. DOI:10.1152/jn.00424.2011
  • Bec JM, Albert ES, Marc I, et al. Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons. Lasers Surg Med. 2012;44:736–745. DOI:10.1002/lsm.22078
  • Suh E, Matic AI, Otting M, et al. Optical stimulation of mice lacking the TRPV1 channel. Proc of SPIE. 2009;7180. DOI:10.1117/12.816891.
  • Brown WG, Needham K, Nayagam BA, et al. Whole cell patch clamp for investigating the mechanisms of infrared neural stimulation. J Vis Exp. 2013;(77): DOI:10.3791/50444
  • Rettenmaier A, Lenarz T, Reuter G. Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells. Biomed Opt Express. 2014;5:1014–1025. DOI:10.1364/BOE.5.001014
  • Needham K, Brown WG, Yong J, et al. Infrared- and nanoparticle-enhanced stimulation of auditory neurons in vitro. Association for Research in Otolaryngology Midwinter Meeting. San Diego 2014 p. PS–231.
  • Shapiro MG, Homma K, Villarreal S, et al. Infrared light excites cells by changing their electrical capacitance. Nat Commun. 2012;3:736. DOI:10.1038/ncomms1742
  • Peterson EJ, Tyler DJ. Activation using infrared light in a mammalian axon model. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1896–1899. DOI:10.1109/EMBC.2012.6346323
  • Dittami GM, Rajguru SM, Lasher RA, et al. Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes. J Physiol. 2011;589:1295–1306. DOI:10.1113/jphysiol.2010.198804
  • Lumbreras V, Bas E, Gupta C, et al. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling. J Neurophysiol. 2014;112:1246–1255. DOI:10.1152/jn.00253.2014
  • Rajguru SM, Richter CP, Matic AI, et al. Infrared photostimulation of the crista ampullaris. J Physiol. 2011;589:1283–1294. DOI:10.1113/jphysiol.2010.198333
  • Paviolo C, Haycock JW, Cadusch PJ, et al. Laser exposure of gold nanorods can induce intracellular calcium transients. J Biophotonics. 2014;7:761–765. DOI:10.1002/jbio.201300043
  • Paviolo C, Thompson AC, Yong J, et al. Nanoparticle-enhanced infrared neural stimulation. J Neural Eng. 2014;11:065002. DOI:10.1088/1741-2560/11/6/065002
  • Yong J, Needham K, Brown WG, et al. Gold-nanorod-assisted near-infrared stimulation of primary auditory neurons. Adv Healthc Mater. 2014;3:1862–1868. DOI:10.1002/adhm.201400027
  • Carvalho-de-Souza JL, Treger JS, Dang B, et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 2015;86:207–217. DOI:10.1016/j.neuron.2015.02.033
  • Deisseroth K. Optogenetics. Nat Methods. 2011;8:26–29. DOI:10.1038/nmeth.f.324
  • Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015;18:1213–1225. DOI:10.1038/nn.4091
  • Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci. 2011;34:389–412. DOI:10.1146/annurev-neuro-061010-113817
  • Jeschke M, Moser T. Considering optogenetic stimulation for cochlear implants. Hear Res. 2015;322:224–234. DOI:10.1016/j.heares.2015.01.005
  • Berndt A, Schoenenberger P, Mattis J, et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A. 2011;108:7595–7600. DOI:10.1073/pnas.1017210108
  • Gradinaru V, Thompson KR, Deisseroth K. eNpHR: a natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 2008;36:129–139. DOI:10.1007/s11068-008-9027-6
  • Kleinlogel S, Feldbauer K, Dempski RE, et al. Ultra light-sensitive and fast neuronal activation with the Ca(2)+-permeable channelrhodopsin CatCh. Nat Neurosci. 2011;14:513–518. DOI:10.1038/nn.2776
  • Lima SQ, Hromadka T, Znamenskiy P, et al. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One. 2009;4:e6099. DOI:10.1371/journal.pone.0006099
  • Shimano T, Fyk-Kolodziej B, Mirza N, et al. Assessment of the AAV-mediated expression of channelrhodopsin-2 and halorhodopsin in brainstem neurons mediating auditory signaling. Brain Res. 2013;1511:138–152. DOI:10.1016/j.brainres.2012.10.030
  • Hernandez VH, Gehrt A, Reuter K, et al. Optogenetic stimulation of the auditory pathway. J Clin Invest. 2014;124:1114–1129. DOI:10.1172/JCI69050
  • Arenkiel BR, Peca J, Davison IG, et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron. 2007;54:205–218. DOI:10.1016/j.neuron.2007.03.005
  • George SS, Wise AK, Shivdasani MN, et al. Evaluation of focused multipolar stimulation for cochlear implants in acutely deafened cats. J Neural Eng. 2014;11:065003. DOI:10.1088/1741-2560/11/6/065003
  • Klapoetke NC, Murata Y, Kim SS, et al. Independent optical excitation of distinct neural populations. Nat Methods. 2014;11:338–346. DOI:10.1038/nmeth.2836
  • Colletti L, Shannon R, Colletti V. Auditory brainstem implants for neurofibromatosis type 2. Curr Opin Otolaryngol Head Neck Surg. 2012;20:353–357. DOI:10.1097/MOO.0b013e328357613d
  • Hight AE, Kozin ED, Darrow K, et al. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant. Hear Res. 2015;322:235–241. DOI:10.1016/j.heares.2015.01.004
  • Akil O, Rouse SL, Chan DK, et al. Surgical method for virally mediated gene delivery to the mouse inner ear through the round window membrane. J Vis Exp. 2015;(97): DOI:10.3791/52187
  • Talbot KN, Hartley DE. Combined electro-acoustic stimulation: a beneficial union? Clin Otolaryngol. 2008;33:536–545. DOI:10.1111/j.1749-4486.2008.01822.x
  • Shibata SB, Cortez SR, Wiler JA, et al. Hyaluronic acid enhances gene delivery into the cochlea. Hum Gene Ther. 2012;23:302–310. DOI:10.1089/hum.2011.086
  • Shibata SB, Di Pasquale G, Cortez SR, et al. Gene transfer using bovine adeno-associated virus in the guinea pig cochlea. Gene Ther. 2009;16:990–997. DOI:10.1038/gt.2009.57
  • Wise AK, Hume CR, Flynn BO, et al. Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther. 2010;18:1111–1122. DOI:10.1038/mt.2010.28
  • Goycoolea MV. Clinical aspects of round window membrane permeability under normal and pathological conditions. Acta Otolaryngol. 2001;121:437–447.
  • Kurioka T, Mizutari K, Niwa K, et al. Hyaluronic acid pretreatment for Sendai virus-mediated cochlear gene transfer. Gene Ther. 2016;23:187–195. DOI:10.1038/gt.2015.94
  • Liu Y, Okada T, Sheykholeslami K, et al. Specific and efficient transduction of cochlear inner hair cells with recombinant adeno-associated virus type 3 vector. Mol Ther. 2005;12:725–733. DOI:10.1016/j.ymthe.2005.03.021
  • Bernstein JG, Han X, Henninger MA, et al. Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons. Proc SPIE Int Soc Opt Eng. 2008;6854:68540H.
  • Bi A, Cui J, Ma YP, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron. 2006;50:23–33. DOI:10.1016/j.neuron.2006.02.026
  • Akil O, Seal RP, Burke K, et al. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron. 2012;75:283–293. DOI:10.1016/j.neuron.2012.05.019
  • Atkinson PJ, Wise AK, Flynn BO, et al. Neurotrophin gene therapy for sustained neural preservation after deafness. PLoS One. 2012;7:e52338. DOI:10.1371/journal.pone.0052338
  • Hadaczek P, Eberling JL, Pivirotto P, et al. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther. 2010;18:1458–1461. DOI:10.1038/mt.2010.106
  • Darrow KN, Slama MC, Kozin ED, et al. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways. Brain Res. 2015;1599:44–56. DOI:10.1016/j.brainres.2014.11.044
  • Takada Y, Beyer LA, Swiderski DL, et al. Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy. Hear Res. 2014;309:124–135. DOI:10.1016/j.heares.2013.11.009
  • Pinyon JL, Tadros SF, Froud KE, et al. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Sci Transl Med. 2014;6:233–254. DOI:10.1126/scitranslmed.3008177
  • Sheffield AM, Gubbels SP, Hildebrand MS, et al. Viral vector tropism for supporting cells in the developing murine cochlea. Hear Res. 2011;277:28–36. DOI:10.1016/j.heares.2011.03.016
  • Schmidt M, Katano H, Bossis I, et al. Cloning and characterization of a bovine adeno-associated virus. J Virol. 2004;78:6509–6516. DOI:10.1128/JVI.78.12.6509-6516.2004
  • Cronin T, Vandenberghe LH, Hantz P, et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med. 2014;6:1175–1190. DOI:10.15252/emmm.201404077
  • Chuong AS, Miri ML, Busskamp V, et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci. 2014;17:1123–1129. DOI:10.1038/nn.3752
  • Shepherd RK, Colreavy MP. Surface microstructure of the perilymphatic space: implications for cochlear implants and cell- or drug-based therapies. Arch Otolaryngol Head Neck Surg. 2004;130:518–523. DOI:10.1001/archotol.130.5.518
  • Hale GM, Querry MR. Optical constants of water in the 200-nm to 200-microm wavelength region. Appl Opt. 1973;12:555–563.
  • Roggan A, Friebel M, Do Rschel K, et al. Optical properties of circulating human blood in the wavelength range 400-2500 nm. J Biomed Opt. 1999;4:36–46. DOI:10.1117/1.429919
  • Van Gemert MJC, Jacques SL, Sterenborg HJCM, et al. Skin optics. IEEE Trans Biomed Eng. 1989;36:1146–1154. DOI:10.1109/10.42108
  • Biomedical photonics handbook. In: Vo-Dinh T, editor Biomedical photonics handbook. Boca Raton (FL): CRC Press; 2003.
  • Yaroslavsky AN, Schulze PC, Yaroslavsky IV, et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol. 2002;47:2059–2073.
  • Matic AI, Robinson AM, Young HK, et al. Behavioral and electrophysiological responses evoked by chronic infrared neural stimulation of the cochlea. PLoS One. 2013;8:e58189. DOI:10.1371/journal.pone.0058189
  • NovartisPharmaceuticals. GenVec. safety, tolerability and efficacy for CGF166 in patients with bilateral severe-to-profound hearing loss. In: Clinicaltrials.gov Internet. Bethesda (MD):National Library of Medicine (US). cited2016 Nov 3 Available from. https://clinicaltrials.gov/show/NCT02132130. ClinicalTrials.gov Identifier: NCT02132130
  • Plontke SK, Hartsock JJ, Gill RM, et al. Intracochlear drug injections through the round window membrane: measures to improve drug retention. Audiol Neurootol. 2016;21:72–79. DOI:10.1159/000442514
  • Kelso CM, Watanabe H, Wazen JM, et al. Microperforations significantly enhance diffusion across round window membrane. Otol Neurotol. 2015;36:694–700. DOI:10.1097/MAO.0000000000000629
  • Balster S, Wenzel GI, Warnecke A, et al. Optical cochlear implant: evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones. Biomed Tech (Berl). 2014;59:19–28. DOI:10.1515/bmt-2013-0038
  • Carland EM, Stoddart PR, Cadusch PJ, et al. Effect of embedded optical fibres on the mechanical properties of cochlear electrode arrays. Med Eng Phys. 2016;38:155–162. DOI:10.1016/j.medengphy.2015.11.015
  • Wade SA, Fallon JB, Wise AK, et al. Measurement of forces at the tip of a cochlear implant during insertion. IEEE Trans Biomed Eng. 2014;61:1177–1186. DOI:10.1109/TBME.2013.2296566
  • Fan B, Li W. Miniaturized optogenetic neural implants: a review. Lab Chip. 2015;15:3838–3855. DOI:10.1039/c5lc00588d
  • Gossler C, Bierbrauer C, Moser R, et al. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants. J Phys D-Applied Phys. 2014;47. DOI:10.1088/0022-3727/47/20/205401.
  • Schwaerzle M, Nehlich J, Ayub S, et al. LED-based optical cochlear implant on highly flexible triple layer polyimide substrates. IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). Shanghai 2016 p.395–398. DOI:10.1109/MEMSYS.2016.7421644
  • McAlinden N, Massoubre D, Richardson E, et al. Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation. Opt Lett. 2013;38:992–994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.